

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 1 / 60

MultiApp V5.1
Java Card Virtual

Machine

Common Criteria / ISO 15408
Security Target – Public version
EAL7

Version 1.1 - June 6th, 2023

Version 1.24 – 2nd September 2021

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 2 / 60

CONTENT

1 SECURITY TARGET INTRODUCTION ... 5

1.1 SECURITY TARGET REFERENCE ... 5
1.2 TOE REFERENCE .. 5
1.3 TOE IDENTIFICATION ... 6
1.4 SECURITY TARGET OVERVIEW ... 7
1.5 REFERENCES .. 8

1.5.1 External References .. 8
1.5.2 Internal References [IR] ... 10

1.6 ACRONYMS AND GLOSSARY .. 10
2 TOE OVERVIEW .. 11

2.1 TOE TYPE ... 11
2.2 PRODUCT ARCHITECTURE ... 11
2.3 TOE BOUNDARIES ... 12
2.4 TOE DESCRIPTION ... 13

2.4.1 Architecture .. 13
The interpreter .. 13

2.5 LIFE-CYCLE ... 14
2.5.1 Product Life-cycle ... 14

2.5.1.1 Actors ... 14
2.5.1.2 Life cycle description for .. 15

2.5.2 TOE Life-cycle .. 17
2.5.3 GP Life-cycle .. 18
2.5.4 Involved Thales-DIS sites ... 19

2.6 TOE INTENDED USAGE .. 19
2.6.1.1 Personalization Phase ... 19
2.6.1.2 Usage Phase .. 19
2.6.1.3 TOE SECURITY FEATURES ... 20
2.6.1.4 NON-TOE HARDWARE/SOFTWARE/FIRMWARE REQUIRED BY THE TOE ... 20
2.6.1.5 TOE Delivery.. 21

3 CONFORMANCE CLAIMS ... 22

3.1 CC CONFORMANCE CLAIM ... 22
3.2 PP CLAIM ... 22
3.3 PACKAGE CLAIM .. 22

4 SECURITY ASPECTS ... 25

4.1 CONFIDENTIALITY ... 25
4.2 INTEGRITY ... 25
4.3 UNAUTHORIZED EXECUTIONS .. 26
4.4 BYTECODE VERIFICATION .. 26

4.4.1 CAP file Verification ... 26
4.4.2 Integrity and Authentication ... 27
4.4.3 Linking and Verification ... 27

5 SECURITY PROBLEM DEFINITION.. 28

5.1 ASSETS .. 28
5.1.1 User data .. 28
5.1.2 TSF data .. 28

5.2 THREATS FROM JAVA CARD SYSTEM PROTECTION PROFILE – OPEN CONFIGURATION 29
5.2.1 Confidentiality .. 29
5.2.2 Integrity ... 29
5.2.3 Identity usurpation .. 30
5.2.4 Unauthorized execution .. 30

5.3 ORGANIZATIONAL SECURITY POLICIES ... 30
5.4 ASSUMPTIONS .. 31

6 SECURITY OBJECTIVES ... 32

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 3 / 60

6.1 SECURITY OBJECTIVES FOR THE TOE .. 32
6.2 SECURITY OBJECTIVES FOR THE OPERATIONAL ENVIRONMENT .. 32

6.2.1 Security Objectives for the Operational Environment from Java Card System Protection Profile – Open

Configuration .. 32
6.2.2 Supplementary security objectives for the operational environment .. 33

6.2.2.1 Identification ... 33
6.2.2.2 Execution .. 33
6.2.2.3 Applet management .. 33
6.2.2.4 Services ... 33
6.2.2.5 CMGR .. 33
6.2.2.6 SCP ... 34

6.3 SECURITY OBJECTIVES RATIONALE .. 34
6.3.1 Security objectives rationale from JCS Protection Profile – Open Configuration 34

6.3.1.1 Threats .. 35
6.3.1.2 Organizational Security Policies ... 37
6.3.1.3 Assumptions ... 38

6.3.2 Compatibility between objectives of the TOE and objectives of [AQU-IC] .. 38
6.3.3 Compatibility between objectives for the environment ... 38

7 SECURITY REQUIREMENTS .. 39

7.1 SECURITY FUNCTIONAL REQUIREMENTS ... 39
7.2 SECURITY ASSURANCE REQUIREMENTS .. 39

7.2.1 Security Functional Requirements from PP Java Card System – Open configuration 41
7.2.1.1 CoreG_LC Security Functional Requirements.. 44

7.3 SECURITY REQUIREMENTS RATIONALE ... 51
7.3.1 OBJECTIVES for PP JCS – OPEN Configuration ... 51

7.3.1.1 SECURITY OBJECTIVES FOR THE TOE .. 51
7.3.2 DEPENDENCIES for PP JCS-OPEN CONFIGURATION .. 52

7.3.2.1 SFRS DEPENDENCIES .. 52
7.3.3 Compatibility between SFR of TOE and SFR of [AQU-IC] .. 53
7.3.4 SAR DEPENDENCIES ... 56
7.3.5 RATIONALE FOR THE SECURITY ASSURANCE REQUIREMENTS .. 57

7.3.5.1 EAL7: Formally verified design and tested .. 57
8 TOE SUMMARY SPECIFICATION ... 58

8.1 TOE SECURITY FUNCTIONS ... 58
8.1.1 SF provided by MultiApp V5.1 platform: SF.FW: Firewall.. 58

8.1.1.1 SF.AID: AID Management ... 59
8.1.2 TSFs provided by the AQUARIUS_BA_09 ... 59

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 4 / 60

FIGURES

Figure 1: MultiApp V5.1 smartcard architecture ... 12
Figure 2: Manufacturing phases description .. 15
Figure 3: Life Cycle description .. 16
Figure 4: JCS (TOE) Life Cycle within Product Life Cycle .. 17
Figure 5: GP Life Cycle... 18

TABLES

Table 1: MAV 5.1 Features configuration ...7
Table 2: Identification of the actors ... 14
Table 3: Threats, OSP, Assumptions vs Security Objectives .. 34
Table 4: Assurance Level 7 (EAL7) .. 39
Table 5: rationale objective vs. SFR .. 51
Table 6: SFR dependencies ... 52
Table 7 Compatibility between SFR of TOE and SFR of [AQU-IC] ... 55
Table 8: SAR dependencies ... 56
Table 9: Security Functions provided by the THALES DIS France SAS AQUARIUS_BA_09 chips .. 60

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 5 / 60

1 SECURITY TARGET INTRODUCTION

1.1 SECURITY TARGET REFERENCE

Title : MultiApp V5.1: VM Security Target

Version : 1.1

ST Reference : D1586135_LITE

Origin : Thales DIS

IT Security Evaluation Facility : LETI

IT Security Certification scheme : Agence Nationale de la Sécurité des Systèmes d’Information
(ANSSI)

1.2 TOE REFERENCE

Product Technical Name : MultiApp V5.1 Virtual Machine

Product Commercial Names: MultiApp V5.1 Virtual Machine

Security Controllers : AQUARIUS_BA_09 (Thales Design Services)

TOE Name : MultiApp V5.1 Java Card Virtual Machine

TOE Version : 5.1 (0x3055)

TOE documentation : Guidance [AGD]

Composition elements:

Composite TOE identifier: AQUARIUS_BA_09 - AQUARIUS_v1

Composite TOE Version: Hardware revision: B

Platform ROM Firmware Revision: A

Platform FLASH Firmware Revision: 09

➢ BIOS: Version 1.0-911

Loader: Version 2.2

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 6 / 60

1.3 TOE IDENTIFICATION

The TOE identification is provided by the Tag identity and CPLC data. These data are available by executing
a dedicated command described in [AGD-OPE] and here below:

The TOE can be identified through the Get Data Command response with tag "0103", as follows:

Name Length Description Value
Participate to TOE

identification

Thales Family Name 1 Java Card 0xB0 YES

Thales OS name 1 MultiApp 0x85 YES

Thales Mask Number 1 MultiappV5 0x68 YES

Thales Product Name 1 0x6A YES

Flow id Version 1

0x01 YES

Filter set 1

0x00 YES

Chip Manufacturer 2 Infineon 0x1290 YES

Chip Identifier 2 Identifier

NO

BPU 2 BPU configuration NO

PDM TP 3 NO

PDM CI 3 NO

Feature FLag – Crypto Config 2 See after NO

Feature Flag – Feature Config byte 1 1 See after NO

Feature Flag – Feature Config byte 2 1 See after NO

Platform Certificates 1 Bit 7 (0x040): CC

Configuration
YES

(only for byte 7)

APPLI CERTIFICATES byte 1 1 Bit 8 (0x80): eTravel

Bit 7 (0x40): IAS

Bit 6-1 : Not used (0)

YES

(only for byte 8 & 7)

APPLI CERTIFICATES byte 2 1 00h NO

Note: the eight first fields of this table (from “Thales Family Name” to “Chip Identifier”) are used for
traceability purpose.

Also, using Get data command with tag 9F7F for product identification :

Name length Description Value Participate to TOE
identification

IC Fabricator 2 Chip fabricator 0x12 0x90 YES

IC Type 2 Chip model number 0x00 0x13 YES

Operating system identifier 2 OS developer 0x19 0x81 YES

Operating system release date 2 Date reference 0x30 0x55 YES

Operating system release level 2 5.1 0x05 0x10 YES

The TOE and the product differ, as further explained in Architecture of the product

• The TOE is the JCS open platform of the MultiApp V5.1 product.

• The MultiApp V5.1 product also includes applets.

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 7 / 60

Optional features / Field (extract
from identity tag)

Crypto features
 byte A

Crypto features
byte B

features
byte 1

features
byte 2

bit 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

ECC x
RSA x

RSA-DH x
RSA-OBKG x

RSA-4K x
SHA3
HMAC x

PACE DH x
PACE ECC x

File system x
ISM x

Etravel x
EAC/GAP x

Linker x
Biometry Fingerprint x

Biometry Facial x
Biometry IRIS x

(Not used)
(Not used)

FIPS x

Table 1: MAV 5.1 Features configuration

Note 1: X with value 1 when the feature is available, X with value 0 when the feature is not available.
Note 2: The bits that are not listed in the table 1 are considered as RFU

The TOE and the product differ, as further explained in Architecture of the product

• The TOE is the Java Card Virtual Machine of the MultiApp V5.1 product.

1.4 SECURITY TARGET OVERVIEW

The main objectives of this ST are:

• To introduce TOE,

• To define the scope of the TOE and its security features,

• To describe the security environment of the TOE, including the assets to be protected and the
threats to be countered by the TOE and its environment during the product development,
production and usage.

• To describe the security objectives of the TOE and its environment supporting in terms of
integrity and confidentiality of application data and programs and of protection of the TOE.

• To specify the security requirements which includes the TOE security functional requirements,
the TOE assurance requirements and TOE security functions.

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 8 / 60

1.5 REFERENCES

1.5.1 External References

[CC] Common Criteria references

[CC-1] Common Criteria for Information Technology Security Evaluation

Part 1: Introduction and general model,

CCMB-2017-04-001, Version 3.1 Revision 5, April 2017.

[CC-2] Common Criteria for Information Technology Security Evaluation

Part 2: Security functional components,

CCMB-2017-04-002, Version 3.1 Revision 5, April 2017.

[CC-3] Common Criteria for Information Technology Security Evaluation

Part 3: Security assurance components,

CCMB-2017-04-003, Version 3.1 Revision 5, April 2017.

[CEM] Common Methodology for Information Technology Security Evaluation

Methodology

CCMB-2017604-001, version 3.1 rev 5 April 2017

[JIL_CPE] Joint Interpretation Library: Composite product evaluation for Smart Cards and similar
devices, Version 1.5.1 May 2018

[PP] Protection profiles

[PP-IC-0084] Security IC Platform Protection Profile with augmentation Packages– BSI-CC-PP-0084-
2014 version 1.0

[PP-JCS-Open] Java Card System Protection Profile – Open Configuration

BSI-CC-PP-0099-V2-2020, Version 3.1, April 2020

[AIS31] A proposal for:

Functionality classes for random number generators Version 2.0 Sept 2011

[IFX] Thales DIS France SAS References

[AQU-IC] [AQU-IC-GDA]

[AQU-IC-GDA] Security Target for AQUARIUS

(Microcontroller AQUARIUS_BA_09

Ref: AQUARIUS_ST

Revision: 0.9 – 19/10/2022

[CR-IC] [CR-IC-GDA]

[CR-IC-GDA] Certification Report, CERTIFICAT ANSSI-CC-2023/01

AQUARIUS_BA_09 - AQUARIUS_v1

EAL6 Augmenté (ASE_TSS.2, ALC_FLR.2)

Date : 04/01/2023

conforme au profil de protection : Security IC Platform Protection Profile with
Augmentation Packages, version 1.0 certifié BSI-CC-PP-0084-2014 le 19 février 2014

[GP] Global Platform references

[GP23] GP2.3.1: GPC_CardSpecification_v2.3.1_PublicRelease_CC.pdf

GlobalPlatform Technology Card Specification

Version 2.3.1 - March 2018

Reference: GPC_SPE_034

[GP23 Amend D] Card Technology Secure Channel Protocol '03' Card Specification v2.3 – Amendment D
Version 1.1.2 - March 2019

Reference: GPC_SPE_014

[GP23 Amend E] Card Technology Security Upgrade for Card Content Management Card Specification
v2.3 – Amendment E

Version 1.1 - October 2016

Reference: GPC_SPE_042

[GP23 Com] Global Platform – Card Common Implementation Configuration

Version v2.1 - July 2018

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 9 / 60

[GP PF] GlobalPlatform TechnologyCard Specification – Privacy FrameworkVersion 1.0.1

Public Release November 2019

Document Reference: GPC_SPE_10

[Others] Others specification references

[JCS] Javacard references

[JAVASPEC] The Java Language Specification. Third Edition, May 2005. Gosling, Joy, Steele and
Bracha. ISBN 0-321-24678-0.

[JVM] The Java Virtual Machine Specification. Lindholm, Yellin. ISBN 0-201-43294-3.

[JCBV] Java Card Platform, version 2.2 Off-Card Verifier. June 2002. White paper. Published by
Sun Microsystems, Inc.

[JCRE3] Java Card 3.1 Runtime Environment (JCRE) Specification – November 2019 – Published
by Oracle

[JCVM3] Java Card 3.1 Virtual Machine (JCVM) Specification – November 2019 – Published by
Oracle

[JCAPI3] Java Card 3.1 Application Programming Interface (API) Specification, Classic Edition -
November 2019 – Published by Oracle

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 10 / 60

1.5.2 Internal References [IR]

[ALC] MulitiApp V5.1 Software – Life Cycle documentation

[ALC-DVS] MultiApp V5.1: ALC DVS document - Javacard Platform, D1576205

[AGD] MulitiApp V5.1 Software – Guidance documentation

[AGD-PRE] Preparation Guidance, D1574816

[AGD-OPE] Operational Guidance, D1574815

[AGD-Ref] MultiApp ID Operating System –Reference Manual, D1525385C

[ASE] MulitiApp V5.1 Software – Security Target

[ST-MAV51] MulitiApp V5.1 Software – JCS Security Target – D1572544

[MAV51_SPM] MultiApp V5.1 SPM – Formal Security Policy Model of the Java Card Virtual Machine -
D1590147

1.6 ACRONYMS AND GLOSSARY

AES Advanced Encryption Standard

APDU Application Protocol Data Unit

API Application Programming Interface

CAD Card Acceptance Device

CC Common Criteria

CPU Central Processing Unit

DES Data Encryption Standard

EAL Evaluation Assurance Level

ECC Elliptic Curve Cryptography

EEPROM Electrically-Erasable Programmable Read-Only Memory

ES Embedded Software

GP Global Platform

IC Integrated Circuit

IT Information Technology

JCRE JavaCard Runtime Environment

JCS JavaCard System

JCVM JavaCard Virtual Machine

NVM Non-Volatile Memory

OP Open Platform

PIN Personal Identification Number

PP Protection Profile

RMI Remote Method Invocation

RNG Random Number Generator

ROM Read-Only Memory

RSA Rivest Shamir Adleman

SAR Security Assurance Requirement

SC Smart Card

SCP Secure Channel Protocol

SFP Security Function Policy

SFR Security Functional Requirement

SHA Secure Hash Algorithm

ST Security Target

TOE Target Of Evaluation

TSF TOE Security Functionality

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 11 / 60

2 TOE OVERVIEW

2.1 TOE TYPE

The Java Card technology combines a subset of the Java programming language with a runtime environment
optimized for smart cards and similar small-memory embedded devices [JCVM3]. The Java Card platform is
a smart card platform enabled with Java Card technology (also called a “Java card”). This technology allows
for multiple applications to run on a single card and provides facilities for secure interoperability of applications.
Applications for the Java Card platform (“Java Card applications”) are called applets.

This security target defines the requirements of the Java Card Virtual Machine as a subset of the Java Card
System, and corresponds to an extension of the evaluation of the full TOE of the product, described in the
security target MultiAppV5.1: JCS Security Target [ST-MAV51]. This security target restricts the security target
[ST-MAV51] to the virtual machine, in charge of the secure execution of the applets after their loading on the
card.
More precisely, the TOE in this security target is made of:

• The interpreter

The TOE is a subset of the Java Card System whose configuration is defined in [PP-JCS-Open] Java Card
System protection profile Open Configuration.

2.2 PRODUCT ARCHITECTURE

The TOE is part of the MultiApp V5.1 smartcard product. This smartcard contains the software dedicated to
the operation of:

➢ The MultiApp V5.1 Platform, which supports the execution of the personalized applets and

provides the smartcard administration services. It is conformant to Java Card 3.1 and GP 2.3.1

standards [GP23]. (With common configuration 2.1 [GP23 Com]) and with GP Privacy

Framework v1.0.1 [GP PF].

The identity applets: GDP, IAS classic V5.2, eTravel v3.1, BioPin Manager v3.1 (MOCA

server/client), MPCOS v4.1, MSFT PnP v1.0, FIDO Authentificator v2.1 applet, LDSv2 v1.1 ,

PURE DI v3.05, TachoG2V2, BelPIC v1.8, Privacy Manager v1.0.

Applet name Package Package AID

GDP com.gemalto.javacardx.gdp A00000001810020303

LDSV2 v1.1 com/gemalto/javacard/icao/lds2 A000000018300B0201000000000000FE

IAS Classic v5.2 com.gemalto.javacard.iasclassic A00000001880000000066240FF

eTravel 3.1 N/A (Natif) A000000018300B0200000000000000FF

BioPin Manager v3.1:

MOC Client
com.gemalto.moc.client 4D4F43415F436C69656E74

BioPin Manager v3.1:

MOC Server
com.gemalto.moc.server 4D4F43415F536572766572

MSFT PnP v1.0 com.gemalto.javacard.mspnp A0000000308000000006DF00FF

Pure DI (version v3.05) com.gemalto.puredi A000000018320A0100000000000000FF

TachoG2V2 com.gemalto.tacho A000000030800000000A2800FF

BelPIC v1.8 com.gemalto.belpic A00000003080000000043417

Privacy Manager v1.0 com.gemalto.javacard.eid A0000000308000000008DB00FF

MPCOS v4.1 com.gemalto.mpcos A00000001830030100000000000000FF

FIDO Authentificator 2.1 com.gemalto.javacard.fido.ctap A000000030800000000A9A00FF

➢ Additionally, other applets – not determined at the moment of the present evaluation – may be

loaded on the smartcard before or after issuance.

➢ A cryptographic library developed by Thales

Therefore, the architecture of the smartcard software and application data can be represented as follows:

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 12 / 60

Open

MOC
Server

MOC
API

MOC
Client

Pure DIIAS
Classic MSFT PnP

GAP eTravel

Perso

Oper

FSM

Pace

GRE

TAv1

CAv1CA
v1 v2 V3

TA
v1 v2

JCRE

JCVM

JavaCard API

lang IO Framework Security

APDU Crypto Biometry

Thales API

Security
Secure

Messaging
FileSystem

Biometry
Ext

GAP
services

Util

JC API
native

NEL – Native Environment Layer

JC Crypto GDP NAX
Thales API

(Native)
OS Agility

Tacho G2

Card
Factory

Filters Crypto
Memory

Management
Communication

Secure
messaging

TLV OS Agility CORE

NEL – Native Environment Layer

AQUARIUS_BA_09 - AQUARIUS_v1

C
o

re
A

p
p

le
ts

D
ri

ve
rs

RESET CRY COM SEC MEM

TO
E

C

JAVA

asm

Fido

Belpic

LDSv2

Class
Util

Figure 1: MultiApp V5.1 smartcard architecture

Applets and the MultiApp V5.1 Java Card platform, are located in flash code area.
All the data (related to the applets or to the Java Card platform) are located in flash data area. The separation
between these data is ensured by the Java Card firewall as specified in [JCRE3].

MultiApp V5.1 products is a modular product where some features could be removed, based on the customer
needs. (See identification and configuration option).

2.3 TOE BOUNDARIES

The Target of Evaluation (TOE) is the Java Card Virtual Machine that is embedded in Smart Card Integrated
Circuit in operation and in accordance to its functional specifications. Other smart card product items and other
embedded software (such as OS, Secure API, etc) are outside the scope of this evaluation.

Java Card RMI is not implemented in the TOE.

Figure 1 shows the TOE boundaries (presented in the red boxes).

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 13 / 60

2.4 TOE DESCRIPTION

2.4.1 Architecture

The present TOE is a subset (identified by the red boxes in Figure 2) of the Java Card System. This subset
ensures the secure execution of an applet that has been byte code verified and loaded on the product. This
execution is processed in two phases:
Phase 1: the (static) link of the loaded CAP file (done once)
Phase 2: the (dynamic) interpretation of the linked byte-codes (done as many as necessary)
The TOE is composed of the following components:

• The interpreter (used for bytecode interpreting)

All these components have the same version as the embedded software evaluated in [ST-MAV51].

The interpreter

Once an application is installed, registered and selected, its execution is carried out by the embedded
interpreter. The interpreter mainly consists of a loop that computes the next bytecode to be executed and
dispatches the appropriate interpretation functions. Such function modifies the runtime data areas of the JCVM
(the heap, the static field images, the frame stack, etc) according to the semantics of the byte code interpreted.

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 14 / 60

2.5 LIFE-CYCLE

2.5.1 Product Life-cycle

2.5.1.1 Actors

Actors Identification

Integrated Circuit (IC) Developer THALES DESIGN SERVICES

Embedded Software Developer (Also named OS developer
for the phase 1 of the Life cycle)

 Thales DIS (See [ALC-DVS] for details)

Integrated Circuit (IC) Manufacturer THALES DESIGN SERVICES

Module Manufacturer THALES
(when it is done before the TOE delivery)

Form factor Manufacturer (optional) THALES
(when it is done before the TOE delivery)
It can be also an accredited company or
the SC Issuer after the TOE delivery

Card manufacturer (Initializer/Pre-personalizer) THALES (See [ALC-DVS] for details)

Personalization Agent (Personalizer) The agent who is acting on the behalf of
the Issuer (e.g. issuing State or
Organization) and personalize the TOE
and applicative data (e.g. MRTD for the
holder) by activities establishing the
identity of the user (e.g. holder with
biographic data).

OS Update loader Agent who is acting on the behalf of the
issuer to load the OS patch on the card

Issuer The Issuer is the actual owner of the SE.
As such, no OS Update operation shall
be made without his consent. This
concept has already been introduced in
the SE PP.

Card Holder The rightful holder of the card for whom
the issuer personalizes it.

Table 2: Identification of the actors

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 15 / 60

2.5.1.2 Life cycle description for

TOE delivery

Platform
development

IC development
& manufacturing

IC packaging

Platform
integration

Product
Personalization

Product
Operational

usage

Phase 1a
Development of mandatory
Embedded Software

Scope covered by IC certificate

Phase 2
IC & DS development

Phase 3
IC Manufacturing & Testing

Phase 4
IC packaging in module

Phase 5b
IC embedding in form factor

Phase 5a
Embedded Software Loading & Pre-
personalisation & Testing (from 1c)

Phase 5c
IC embedding in
form factor

Phase 5a
Embedded Software Loading & Pre-
personalisation & Testing (from 1c)

Phase 1b
Embedded Software
configuration
(to load on IC)

Phase 6
Embedded Software
personalisation

Phase 7c
Software loading (Load, Install &
delete instance) in Operational
Usage (from 1c, 1d)

Platform Life Cycle

TOE Usage

Phase 7a
Application
verification,
loading, delete
instance and
install

Phase 1c
Application
development
(to load on IC)

Thales
application

Patch for pre-
personalisation

Application
Life Cycle

Su
p

p
lier ap

p
licatio

n

o
n the field

: D
elete

in
stan

ce &
 In

stall
re

qu
est

Platform
integration

Phase 7b
Patch verification,
signature, loading
(from 1d)

Phase 1d
Patch
development
(to load on IC)

Patch
Life Cycle

P
atch

 fo
r p

o
st-p

erso
n

alisatio
n

Phase 7d
Operational
(State= OP_READY)

Supplier application
Thales

pre-personalisation
loading

Figure 2: Manufacturing phases description

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 16 / 60

The Life cycle is described on the figure hereunder:

Phase Description / comments Who Where

1

MAV5.1 platform

development
Platform development & tests (1.a)

Thales

R&D team

SL Crypto team

- secure environment -

Thales

Development site

(see §2.5.4)

Thales applets

(IAS, eTravel…)

development

- Applet Development (1.c)

- Applet tests

Thales

R&D team

- secure environment -

Thales

Development site

(see §2.5.4)

Patch development
- Patch Development (1.d)

- Patch tests

Thales

R&D team

- secure environment -

Thales

Development site

(see §2.5.4)

PSE team
- Platform configuration (1.b)

- Script development

Thales Thales Product

Engineering

Thales

manufacturing site

(see §2.5.4)

2 IC development Integrated circuits development
THALES DIS France SAS

- Secure environment -
THALES DIS France

SAS development site(s)

3
IC manufacturing &

Testing

Manufacturing of virgin integrated circuits

embedding the THALES DIS France SAS flash

loader, and protected by a dedicated transport

key.

THALES DIS France SAS

- Secure environment -

THALES DIS France

SAS development site(s)

4

SC manufacturing:

IC packaging &

Embedding, also

called “assembly”

- IC packaging & testing

Thales Production teams

- Secure environment -

Thales

manufacturing site

(see §2.5.4)

5.a

Initialization /

Pre-personalization
Loading of the Thales software (platform and

applets on top based on script generated) Thales Production teams

- Secure environment -

Thales

manufacturing site

(see §2.5.4)
5.b Embedding

Put the module on a dedicated form factor

(Card, inlay MFF2, other…)

5c Embedding
Put the module on a dedicated form factor

(Card, inlay MFF2, other…)
SC Issuer or another

accredited company

SC Personalizer or

Accredited company site

6 SC Personalization

Creation of files and loading of end-user data
SC Issuer or Another

accredited company

SC Personalizer or

Accredited company site

7 End-usage

Application verification before loading (7.a) SC Issuer Field

Application Loading (Load, Install and delete

instance capabilities) (7.c)
SC Issuer Field

Patch verification before loading (Signature)

(7.b)
Thales Field

Patch update (7.b) Thales Field

End-usage for cardholder (7.d) Cardholder Field

Figure 3: Life Cycle description

Remark 1: Initialization & pre-personalization operation could be done on module or on other form factor. The
form factor does not affect the TOE security.

Remark 2: For initialization/pre-personalization IC flash loader could be used based on the IC manufacturer
recommendation.

Remark 3: Embedding (module put on a dedicated form factor) will be done on an audited site if the Embedding
phase (5a & 5b) is before the TOE delivery.

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 17 / 60

2.5.2 TOE Life-cycle

The Java Card System (the TOE) life cycle is part of the product life cycle, i.e. the Java Card platform with
applications, which goes from product development to its usage by the final user.

The Java Card System (i.e. the TOE) life-cycle itself can be decomposed in four stages:

- Development

- Storage, pre-personalization and testing

- Personalization and testing

- Final usage

The JCS storage is not necessarily a single step in the life cycle since it can be stored in parts. The JCS
delivery occurs before storage and may take place more than once if the TOE is delivered in parts.
These four stages map to the product life cycle phases as shown in Figure 6.

As a summary description of how the parts of the TOE are delivered to the final customer, the MultiApp V5.1
application is delivered mainly in form of a smart card or inlay. The form factor is packaged on Thales DIS’s
manufacturing facility and sent to final customer premises.

The different guides accompanying the TOE and parts of the TOE are the ones specified in [AGD] section.
They are delivered in form of electronic documents (*.pdf) by Thales DIS’s Technical representative.

Note related to patch development

No patch is present within the TOE for the present evaluation. Indeed, should a patch be needed in the future,
it would require at least a maintenance of the CC certificate, as required by the CC scheme rules. However,
the patch mechanism is part of the TOE and as such its security is assessed within the present evaluation.

JCS Development

Phase 1

Smartcard Embedded Software

Development

Phase 2

IC Development

JCS Storage, Preperso,

Testing

Phase 3

IC Manufacturing & Testing

Phase 4

IC Packaging & Testing

Phase 5

Smartcard Prepersonalization

& Testing

JCS Storage, Preperso &

Testing

Phase 6

Smartcard Personalization &

Testing

JCS Personalization &

Testing

Phase 7

Smartcard End-Usage

JCS End-Usage

JC
S

D
e

liv
e

ry

TOE Delivery

T
O

E
 d

e
v

e
lo

p
m

e
n

t
a

n
d

 m
a
n

u
fa

c
tu

ri
n

g

TOE usage for
administrators

TOE end-usage

C
o

v
e

re
d

 b
y

 A
L

C

A
s
s

u
ra

n
c

e
 f

a
m

il
ie

s

C
o

v
e

re
d

 b
y

 A
G

D

A
s
s

u
ra

n
c

e
 f

a
m

il
ie

s

Phase 1

Patch development

Phase 5

Patch signature / encryption

OS Agility

Patch

Loading

P
a

tc
h

 d
e

v
e
lo

p
m

e
n

t
P

a
tc

h
 d

e
p

lo
y

m
e

n
t

Phase 5

Patch delivery

Figure 4: JCS (TOE) Life Cycle within Product Life Cycle

JCS Development is performed during Phase 1. This includes JCS conception, design, implementation, testing
and documentation. The JCS development shall fulfill requirements of the final product, including conformance

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 18 / 60

to Java Card Specifications, and recommendations of the SCP user guidance. The JCS development shall
occur in a controlled environment that avoids disclosure of source code, data and any critical documentation
and that guarantees the integrity of these elements. The present evaluation includes the JCS development
environment.

In Phase 3, the IC Manufacturer may store, initialize the JCS and potentially conduct tests on behalf of the
JCS developer. The IC Manufacturing environment shall protect the integrity and confidentiality of the JCS and
of any related material, for instance test suites. The present evaluation includes the whole IC Manufacturing
environment, in particular those locations where the JCS is accessible for installation or testing. As the Security
IC has already been certified against [PP-IC-0084] there is no need to perform the evaluation again.

In Phase 5, the SC Pre-Personalizer may store, pre-personalize the JCS and potentially conduct tests on
behalf of the JCS developer. The SC Pre-Personalization environment shall protect the integrity and
confidentiality of the JCS and of any related material, for instance test suites.

(Part of) JCS storage in Phase 5 implies a TOE delivery after Phase 5. Hence, the present evaluation includes
the SC Pre-Personalization environment. The TOE delivery point is placed at the end of Phase 5, since the
entire TOE is then built and embedded in the Security IC.

The JCS is personalized in Phase 6, if necessary. The SC Personalization environment is not included in the
present evaluation. Appropriate security recommendations are provided to the SC Personalizer through the
[AGD] documentation.

The JCS final usage environment is that of the product where the JCS is embedded in. It covers a wide
spectrum of situations that cannot be covered by evaluations. The JCS and the product shall provide the full
set of security functionalities to avoid abuse of the product by untrusted entities.
Note: Potential applications loaded in pre-issuance will be verified using dedicated evaluated verification
process. Applications loaded in post-issuance will need to follow dedicated development rules.

2.5.3 GP Life-cycle

Note that the Patch management (OS-Agility mechanisms) will be
available only for the mode:

- OP_READY

- INITIALIZED
- SECURED

Figure 5: GP Life Cycle

OP_READY

INITIALIZED

SECURED

CARD_LOCKED

TERMINATED

Personalization

Usage

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 19 / 60

2.5.4 Involved Thales-DIS sites

❑ Development and Project Managment

o La Ciotat (France)
▪ CC project management

o Singapore
▪ Platform & eTravel development

o Meudon (France)
▪ Platform & eTravel development

o Vantaa
▪ Platform & eTravel development support

❑ Manufacturing

o Gémenos, Singapore, Vantaa, Tczew, Curitiba, Chanhassen, Pont-Audemer

❑ IT activities
o Gémenos, Calamba, Les Clayes, Marcoussi, Pune

2.6 TOE INTENDED USAGE

2.6.1.1 Personalization Phase

During the Personalization Phase the following Administrative Services are available:

• Applet Load

• Applet Install

• Applet Personalization

• Applet Delete

• Applet Extradite

• Applet Management Lock

If the OS Agility is available

• Patch Management

All applet management operations require the authentication of the Issuer. By erasing the authentication keys
with random numbers, the Issuer can prevent all subsequent applet management operations. This operation
is not reversible.
In the Personalization phase, Applet Management Lock is optional.

2.6.1.2 Usage Phase

During the Usage Phase, if the Applet Management lock has not been put, the Administrative Services are
available as during the Personalization phase:

• Applet Load

• Applet Install

• Applet Personalization

• Applet Delete

• Applet Extradite

• Applet Management Lock

In addition, the following User services are available:

• Applet Selection

• Applet Interface

If the OS Agility is available

• Patch Management

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 20 / 60

2.6.1.3 TOE SECURITY FEATURES

The principal security feature of the TOE is the correct and secure execution of applications (i.e. Java Card
applets).
While the Java Card virtual machine (JCVM) is responsible for ensuring language-level security, the JCRE
provides additional security features for the product. The basic runtime security feature imposed by the JCRE
enforces isolation of applets using the Java Card firewall. It prevents objects created by one applet from being
used by another applet without explicit sharing. This prevents unauthorized access to the fields and methods
of class instances, as well as the length and contents of arrays.

The firewall is an important security feature which enables complete isolation between applets or controlled
communication through additional mechanisms that allow them to share objects when needed. The JCRE
allows such sharing using the concept of “shareable interface objects” (SIO) and static public variables. The
JCVM should ensure that the only way for applets to access any resources are either through the JCRE or
through the native API.

Among the security services provided by the platform to the applications to protect their data and assets, the
TOE of this security target is in charge of:

• Confidentiality and integrity of application data among applications. Applications belonging to
different contexts are isolated from each other. Application data are not accessible by a normal or
abnormal execution of another basic or secure application.

• Code execution integrity. The Java Card VM and the “applications isolation” property guarantee that
the application code is operating as specified in absence of perturbations.

Other security services are ensured by the product and described in [ST-MAV51].

2.6.1.4 NON-TOE HARDWARE/SOFTWARE/FIRMWARE REQUIRED BY THE TOE

The TOE does not include the following components (that are part of the JCRE and JCAPI of the MultiAppv5.1
system):

• Applet selection/deletion/loading

• Object deletion

• Java Card RMI

• Cryptographic API

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 21 / 60

2.6.1.5 TOE Delivery

As a summary description of how the parts of the TOE are delivered to the final customer, the MultiApp v5.1
embedded software is delivered mainly in form of a smart card, module or wafer. The form factor is packaged
on Thales’s manufacturing facility and sent to final customer premises or via the wafer init process from the IC
Manufacturer premises.

The product is sent to the customer by standard transportation respecting Thales Transport Security Policies.

The different guides accompanying the TOE and parts of the TOE are the ones specified in [AGD] section.
They are delivered in form of electronic documents (*.pdf) by Thales’s Technical representative via a secure
file sharing platform download action.

Item type Item Reference/Version Form of delivery

Software and
Hardware MultiApp v5.1 Refer to paragraph §1.3 Smart card, module or wafer

Document MultiApp V5.1: AGD_OPE
document - Javacard Platform

D1574815 – v1.8
30/03/2023

Electronic document via
secure file download

Document MultiApp V5.1: AGD_PRE
document - Javacard Platform

D1574816 – v1.8

30/03/2023

Electronic document via
secure file download

Document
MultiApp ID V5 Operating System

Reference Manual
D1525385C,

December 7th, 2022
Electronic document via

secure file download

Document
MultiApp Guidance Document

Guidance document for secure
development for MultiApp products

D1539156, v1.2
24/03/2023

Electronic document via
secure file download

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 22 / 60

3 CONFORMANCE CLAIMS

3.1 CC CONFORMANCE CLAIM

Common criteria Version:
This ST conforms to CC Version 3.1 revision 5 [CC-1] [CC-2] [CC-3].

Conformance to CC part 2 and 3:
- CC part 2 conformant.

All the other security requirements have been drawn from the catalogue of requirements in Part 2 [CC-2].
- CC part 3 conformant.

The Common Methodology for Information Technology Security Evaluation, Evaluation Methodology; [CEM]
has to be taken into account.

The assurance requirement of this security target is EAL7.

3.2 PP CLAIM

The MultiApp V5.1 Virtual Machine security target does not claims strict conformance to the Protection
Profile “JavaCard System – Open configuration”, ([PP-JCS-Open]). Also the TOE is part of the embedded
software of the MultiAppV5.1 product evaluated in the [ST-MAV51] that has a “demonstrable” conformance
to [PP-JCS-Open].

The MultiApp V5.1 JCS security target is a composite security target, including the IC security target [AQU-
IC]. However, the security problem definition, the objectives, and the SFR of the IC are not described in this
document.

3.3 PACKAGE CLAIM

This ST is conforming to assurance package EAL7.

Because the TOE is a subset of the reference TOE defined in [PP-JCS-Open], only a subset of its SFRs are
enforced in this evaluation. Table 1 explains how the SFRs of PP are refined and used in this ST.

Consequently, only a subset of the security objectives defined in PP are satisfied in this ST (because of the
limited TOE security functions). The other objectives are put in the environment. Table 2 resumes the
modifications done by this ST with respect to the [PP-JCS-Open].

Functional requirements Refined in [PP-JCS-Open] Refined in this ST

FDP_ACC.2/FIREWALL Yes No

FDP_ACF.1/FIREWALL Yes Yes

FDP_IFC.1/JCVM Yes No

FDP_IFF.1/JCVM Yes No

FDP_ROL.1/FIREWALL Yes Not used

FDP_RIP.1/OBJECTS Yes Not used

FMT_MSA.1/JCRE Yes Yes

FMT_MSA.1/JCVM Yes Yes

FMT_MSA.2/FIREWALL_JCVM Yes No

FMT_MSA.3/FIREWALL Yes No

FMT_MSA.3/JCVM Yes No

FMT_SMF.1/CORE_LC Yes Yes

FMT_SMR.1/JCRE Yes No

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 23 / 60

FDP_RIP.1/ABORT Yes Not used

FDP_RIP.1/APDU Yes Not used

FDP_RIP.1/GlobalArray Yes Not used

FDP_RIP.1/bArray Yes Not used

FDP_RIP.1/KEYS Yes Not used

FDP_RIP.1/TRANSIENT Yes Not used

FDP_ROL.1/FIREWALL Yes Not used

FAU_ARP.1 Yes Not used

FDP_SDI.2/DATA Yes Not used

FPR_UNO.1 Yes Not used

FPT_FLS.1/JCS Yes Not used

FPT_TDC.1 Yes Not used

FIA_ATD.1/AID Yes Not used

FIA_UID.2/AID Yes Not used

FIA_USB.1/AID Yes Not used

FMT_MTD.1/JCRE Yes Yes

FMT_MTD.3/JCRE Yes Not used

FDP_ITC.2/Installer Yes Not used

FMT_SMR.1/Installer Yes Not used

FPT_FLS.1/Installer Yes Not used

FPT_RCV.3/Installer Yes Not used

FDP_ACC.2/ADEL Yes Not used

FDP_ACF.1/ADEL Yes Not used

FDP_RIP.1/ADEL Yes Not used

FMT_MSA.1/ADEL Yes Not used

FMT_MSA.3/ADEL Yes Not used

FMT_SMF.1/ADEL Yes Not used

FMT_SMR.1/ADEL Yes Not used

FPT_FLS.1/ADEL Yes Not used

FDP_RIP.1/ODEL Yes Not used

FPT_FLS.1/ODEL Yes Not used

FCO_NRO.2/CM Yes Not used

FDP_IFC.2/CM Yes Not used

FDP_IFF.1/CM Yes Not used

FDP_UIT.1/CM Yes Not used

FIA_UAU.1/CM Yes Not used

FIA_UID.1/CM Yes Not used

FMT_MSA.1/CM Yes Not used

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 24 / 60

FMT_MSA.3/CM Yes Not used

FMT_SMF.1/CM Yes Not used

FMT_SMR.1/CM Yes Not used

FTP_ITC.1/CM Yes Not used

FPT_TST.1/SCP Yes Not used

FPT_PHP.3/SCP Yes Not used

FPT_RCV.4/SCP Yes Not used

FDP_ACC.1/CMGR Yes Not used

FDP_ACF.1/CMGR Yes Not used

FMT_MSA.1/CMGR Yes Not used

FMT_MSA.3/CMGR Yes Not used

FPT_FLS.1/SpecificAPI Yes Not used

FPT_ITT.1/SpecificAPI Yes Not used

FPR_UNO.1/SpecificAPI. Yes Not used

FCS_RNG.1 Yes Not used

FMT_SMR.1/OS-UPDATE Yes Not used

FMT_SMF.1/OS-UPDATE Yes Not used

FIA_ATD.1/OS-UPDATE Yes Not used

FDP_ACC.1/OS-UPDATE Yes Not used

FDP_ACF.1/OS-UPDATE Yes Not used

FMT_MSA.3/OS-UPDATE Yes Not used

FTP_TRP.1/OS-UPDATE Yes Not used

Table 1 - Refinement of SFR of PP JCS Open

PP JCS elements Modification in ST

Assets Not changed

Threats Not changed

Assumptions Augmented

OSP Not changed

Security objectives Reduced

Security objective for the operational environment Not changed

Security functional requirements Reduced

Security assurance requirements Reduced

Table 2 - Compatibility study

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 25 / 60

4 SECURITY ASPECTS

This chapter describes the main security issues of the Java Card System and its environment addressed in
this ST, called “security aspects”, in a CC-independent way. In addition to this, they also give a semi-formal
framework to express the CC security environment and objectives of the TOE. They can be instantiated as
assumptions, threats, objectives (for the TOE and the environment) or organizational security policies. For
instance, we will define hereafter the following aspect:

#.OPERATE (1) The TOE must ensure continued correct operation of its security functions.
(2) The TOE must also return to a well-defined valid state before a service request in case of
failure during its operation.

TSFs must be continuously active in one way or another; this is called “OPERATE”.

4.1 CONFIDENTIALITY

#.CONFID-APPLI-
DATA

Application data must be protected against unauthorized disclosure. This
concerns logical attacks at runtime in order to gain read access to other
application’s data.

#.CONFID-JCS-CODE Java Card System code must be protected against unauthorized disclosure.
Knowledge of the Java Card System code may allow bypassing the TSF. This
concerns logical attacks at runtime in order to gain a read access to executable
code, typically by executing an application that tries to read the memory area
where a piece of Java Card System code is stored.

#.CONFID-JCS-DATA Java Card System data must be protected against unauthorized disclosure. This
concerns logical attacks at runtime in order to gain a read access to Java Card
System data. Java Card System data includes the data managed by the Java
Card RE, the Java Card VM and the internal data of Java Card platform API
classes as well.

4.2 INTEGRITY

#.INTEG-APPLI-CODE Application code must be protected against unauthorized modification. This
concerns logical attacks at runtime in order to gain write access to the memory
zone where executable code is stored. In post-issuance application loading, this
threat also concerns the modification of application code in transit to the card.

#.INTEG-APPLI-DATA Application data must be protected against unauthorized modification. This
concerns logical attacks at runtime in order to gain unauthorized write access to
application data. In post-issuance application loading, this threat also concerns
the modification of application data contained in a CAP file in transit to the card.
For instance, a CAP file contains the values to be used for initializing the static
fields of the CAP file.

#.INTEG-JCS-CODE Java Card System code must be protected against unauthorized modification.
This concerns logical attacks at runtime in order to gain write access to
executable code.

#.INTEG-JCS-DATA Java Card System data must be protected against unauthorized modification.
This concerns logical attacks at runtime in order to gain write access to Java Card
System data. Java Card System data includes the data managed by the Java
Card RE, the Java Card VM and the internal data of Java Card API classes as
well.

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 26 / 60

4.3 UNAUTHORIZED EXECUTIONS

#.EXE-APPLI-CODE Application (byte) code must be protected against unauthorized execution. This
concerns (1) invoking a method outside the scope of the accessibility rules provided
by the access modifiers of the Java programming language ([JAVASPEC]§6.6); (2)
jumping inside a method fragment or interpreting the contents of a data memory
area as if it was executable code.;

#.EXE-JCS-CODE Java Card System bytecode must be protected against unauthorized execution.
Java Card System bytecode includes any code of the Java Card RE or API. This
concerns (1) invoking a method outside the scope of the accessibility rules provided
by the access modifiers of the Java programming language ([JAVASPEC]§6.6); (2)
jumping inside a method fragment or interpreting the contents of a data memory area
as if it was executable code. Note that execute access to native code of the Java
Card System and applications is the concern of #.NATIVE.

#.FIREWALL The Firewall shall ensure controlled sharing of class instances, and isolation of their
data and code between CAP files (that is, controlled execution contexts) as well as
between CAP files and the JCRE context. An applet shall neither read, write nor
compare a piece of data belonging to an applet that is not in the same context, nor
execute one of the methods of an applet in another context without its authorization.

#.NATIVE Because the execution of native code is outside of the JCS TSF scope, it must be
secured so as to not provide ways to bypass the TSFs of the JCS. Loading of native
code, which is as well outside the TSFs, is submitted to the same requirements.
Should native software be privileged in this respect, exceptions to the policies must
include a rationale for the new security framework they introduce.

4.4 BYTECODE VERIFICATION

#.VERIFICATION All bytecode must be verified prior to being executed. Bytecode verification includes
(1) how well-formed CAP file is and the verification of the typing constraints on the
bytecode, (2) binary compatibility with installed CAP files and the assurance that the
export files used to check the CAP file correspond to those that will be present on
the card when loading occurs.

4.4.1 CAP file Verification

Bytecode verification includes checking at least the following properties: (1) bytecode instructions represent a
legal set of instructions used on the Java Card platform; (2) adequacy of bytecode operands to bytecode
semantics; (3) absence of operand stack overflow/underflow; (4) control flow confinement to the current
method (that is, no control jumps to outside the method); (5) absence of illegal data conversion and reference
forging; (6) enforcement of the private/public access modifiers for class and class members; (7) validity of any
kind of reference used in the bytecodes (that is, any pointer to a bytecode, class, method, object, local variable,
etc actually points to the beginning of piece of data of the expected kind); (8) enforcement of rules for binary
compatibility (full details are given in [JCVM3], [JVM], [JCBV]). The actual set of checks performed by the
verifier is implementation-dependent, but shall at least enforce all the “must clauses” imposed in [JCVM3] on
the bytecodes and the correctness of the CAP files’ format.
As most of the actual Java Card VMs do not perform all the required checks at runtime, mainly because smart
cards lack memory and CPU resources, CAP file verification prior to execution is mandatory. On the other
hand, there is no requirement on the precise moment when the verification shall actually take place, as far as
it can be ensured that the verified file is not modified thereafter. Therefore, the bytecodes can be verified either
before the loading of the file on to the card or before the installation of the file in the card or before the execution,
depending on the card capabilities, in order to ensure that each bytecode is valid at execution time. This
Security Target assumes bytecode verification is performed off-card.

Another important aspect to be considered about bytecode verification and application downloading is, first,
the assurance that every CAP file required by the loaded applet is indeed on the card, in a binary-compatible
version (binary compatibility is explained in [JCVM3] §4.4), second, that the export files used to check and link
the loaded applet have the corresponding correct counterpart on the card.

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 27 / 60

4.4.2 Integrity and Authentication

Verification off-card is useless if the application CAP files is modified afterwards. The usage of cryptographic
certifications coupled with the verifier in a secure module is a simple means to prevent any attempt of
modification between CAP file verification and CAP file installation.

Once a verification authority has verified the CAP file, it signs it and sends it to the card. Prior to the installation
of the CAP file, the card verifies the signature of the CAP file, which authenticates the fact that it has been
successfully verified. In addition to this, a secured communication channel is used to communicate it to the
card, ensuring that no modification has been performed on it.

Alternatively, the card itself may include a verifier and perform the checks prior to the effective installation of
the applet or provide means for the bytecodes to be verified dynamically. On-card bytecode verifier is out of
the scope of this Security Target.

4.4.3 Linking and Verification

Beyond functional issues, the installer ensures at least a property that matters for security: the loading order
shall guarantee that each newly loaded CAP file references only CAP files that have been already loaded on
the card. The linker can ensure this property because the Java Card platform does not support dynamic
downloading of classes.

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 28 / 60

5 SECURITY PROBLEM DEFINITION

5.1 ASSETS

The assets of the TOE are part of those defined in [PP-JCS-Open]. The assets of [PP-IC-0084] are studied in
[AQU-IC].

Assets are security-relevant elements to be directly protected by the TOE. Confidentiality of assets is always
intended with respect to un-trusted people or software, as various parties are involved during the first stages
of the smart card product life-cycle; details are given in threats hereafter.

Assets may overlap, in the sense that distinct assets may refer (partially or wholly) to the same piece of
information or data. For example, a piece of software may be either a piece of source code (one asset) or a
piece of compiled code (another asset), and may exist in various formats at different stages of its development
(digital supports, printed paper). This separation is motivated by the fact that a threat may concern one form
at one stage, but be meaningless for another form at another stage.

The assets to be protected by the TOE are listed below. They are grouped according to whether it is data
created by and for the user (User data) or data created by and for the TOE (TSF data). For each asset it is
specified the kind of dangers that weigh on it.

5.1.1 User data

D.APP_CODE
The code of the applets and libraries loaded on the card.
To be protected from unauthorized modification.

D.APP_C_DATA

Confidential sensitive data of the applications, like the data contained in an object, a static field, a local
variable of the currently executed method, or a position of the operand stack.
To be protected from unauthorized disclosure.

D.APP_I_DATA

Integrity sensitive data of the applications, like the data contained in an object and the PIN security
attributes (PIN Try limit, PIN Try counter and State). To be protected from unauthorized modification.

D.APP_KEYs

Cryptographic keys owned by the applets.
To be protected from unauthorized disclosure and modification.

D.PIN

Any end-user's PIN.
To be protected from unauthorized disclosure and modification.

5.1.2 TSF data

D.API_DATA
Private data of the API, like the contents of its private fields.
To be protected from unauthorized disclosure and modification.

D.CRYPTO

Cryptographic data used in runtime cryptographic computations, like a seed used to generate a key.
To be protected from unauthorized disclosure and modification.

D.JCS_CODE
The code of the Java Card System.
To be protected from unauthorized disclosure and modification.

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 29 / 60

D.JCS_DATA
The internal runtime data areas necessary for the execution of the Java Card VM, such as, for instance,
the frame stack, the program counter, the class of an object, the length allocated for an array, any pointer
used to chain data-structures.
To be protected from monopolization and unauthorized disclosure or modification.

D.SEC_DATA

The runtime security data of the Java Card RE, like, for instance, the AIDs used to identify the installed
applets, the currently selected applet, the current context of execution and the owner of each object.
To be protected from unauthorized disclosure and modification.

5.2 THREATS FROM JAVA CARD SYSTEM PROTECTION PROFILE – OPEN CONFIGURATION

This section introduces the threats to the assets against which specific protection within the TOE or its
environment is required. The threats are classified in several groups.

5.2.1 Confidentiality

T.CONFID-APPLI-DATA
The attacker executes an application to disclose data belonging to another application. See #.CONFID-
APPLI-DATA for details.
Directly threatened asset(s): D.APP_C_DATA, ARRAY_VIEWS_CONF, D.PIN, and D.APP_KEYs.

T.CONFID-JCS-CODE

The attacker executes an application to disclose the Java Card System code. See #.CONFID-JCS-CODE
for details.
Directly threatened asset(s): D.JCS_CODE.

T.CONFID-JCS-DATA

The attacker executes an application to disclose data belonging to the Java Card System. See #.CONFID-
JCS-DATA for details.
Directly threatened asset(s): D.API_DATA, D.SEC_DATA, D.JCS_DATA, and D.CRYPTO.

5.2.2 Integrity

T.INTEG-APPLI-CODE
The attacker executes an application to alter (part of) its own code or another application's code. See
#.INTEG-APPLI-CODE for details.
Directly threatened asset(s): D.APP_CODE

T.INTEG-APPLI-CODE.LOAD

The attacker modifies (part of) its own or another application code when an application CAP file is
transmitted to the card for installation. See #.INTEG-APPLI-CODE for details.
Directly threatened asset(s): D.APP_CODE.

T.INTEG-APPLI-DATA

The attacker executes an application to alter (part of) another application's data. See #.INTEG-APPLI-
DATA for details.
Directly threatened asset(s): D.APP_I_DATA, ARRAY_VIEWS_INT, D.PIN, and D.APP_KEYs.

T.INTEG-APPLI-DATA.LOAD

The attacker modifies (part of) the initialization data contained in an application CAP file when the CAP
file is transmitted to the card for installation. See #.INTEG-APPLI-DATA for details.
Directly threatened asset(s): D.APP_I_DATA and D_APP_KEYs.

T.INTEG-JCS-CODE

The attacker executes an application to alter (part of) the Java Card System code. See #.INTEG-JCS-
CODE for details.
Directly threatened asset(s): D.JCS_CODE.

T.INTEG-JCS-DATA

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 30 / 60

The attacker executes an application to alter (part of) Java Card System or API data. See #.INTEG-JCS-
DATA for details.
Directly threatened asset(s): D.API_DATA, D.SEC_DATA, D.JCS_DATA, and D.CRYPTO.

Other attacks are in general related to one of the above, and aimed at disclosing or modifying on-card
information. Nevertheless, they vary greatly on the employed means and threatened assets, and are thus
covered by quite different objectives in the sequel. That is why a more detailed list is given hereafter.

5.2.3 Identity usurpation

T.SID.1
An applet impersonates another application, or even the Java Card RE, in order to gain illegal access to
some resources of the card or with respect to the end user or the terminal. See #.SID for details.
Directly threatened asset(s): D.SEC_DATA (other assets may be jeopardized should this attack succeed,
for instance, if the identity of the JCRE is usurped), D.PIN and D.APP_KEYs.

T.SID.2

The attacker modifies the TOE's attribution of a privileged role (e.g. default applet and currently selected
applet), which allows illegal impersonation of this role. See #.SID for further details.
Directly threatened asset(s): D.SEC_DATA (any other asset may be jeopardized should this attack
succeed, depending on whose identity was forged).

5.2.4 Unauthorized execution

T.EXE-CODE.1
An applet performs an unauthorized execution of a method. See #.EXE-JCS-CODE and #.EXE-APPLI-
CODE for details.

Directly threatened asset(s): D.APP_CODE.

T.EXE-CODE.2
An applet performs an execution of a method fragment or arbitrary data. See #.EXE-JCS-CODE and
#.EXE-APPLI-CODE for details.
Directly threatened asset(s): D.APP_CODE.

T.NATIVE
An applet executes a native method to bypass a security function such as the firewall. See #.NATIVE for
details.

Directly threatened asset(s): D.JCS_DATA.

5.3 ORGANIZATIONAL SECURITY POLICIES

This section describes the organizational security policies to be enforced with respect to the TOE environment.
This organizational security policies is coming from the Java Card System Protection Profile – Open
Configuration

OSP.VERIFICATION

This policy shall ensure the consistency between the export files used in the verification and those used
for installing the verified file. The policy must also ensure that no modification of the file is performed in
between its verification and the signing by the verification authority. See #.VERIFICATION for details.
If the application development guidance provided by the platform developer contains recommendations
related to the isolation property of the platform, this policy shall also ensure that the verification authority
checks that these recommendations are applied in the application code.

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 31 / 60

5.4 ASSUMPTIONS

This section introduces the assumptions made on the environment of the TOE. This assumption is coming
from the Java Card System Protection Profile – Open Configuration

A.VERIFICATION

All the bytecodes are verified at least once, before the loading, before the installation or before the
execution, depending on the card capabilities, in order to ensure that each bytecode is valid at execution
time.

A.CAP_FILE

CAP Files loaded post-issuance do not contain native methods. The Java Card specification explicitly
"does not include support for native methods" ([JCVM3], §3.3) outside the API.

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 32 / 60

6 SECURITY OBJECTIVES

6.1 SECURITY OBJECTIVES FOR THE TOE

This section defines the security objective from the Java Card System Protection Profile Open Configuration
to be achieved by the TOE.

O.FIREWALL
The TOE shall ensure controlled sharing of data containers owned by applets of different CAP file, or the JCRE
and between applets and the TSFs. See #.FIREWALL for details.

O.ARRAY_VIEWS_CONFID
The TOE shall ensure that no application can read elements of an array view not having array view security
attribute ATTR_READABLE_VIEW.
The TOE shall ensure that an application can only read the elements of the array view within the bounds of
the array view.

O. ARRAY_VIEWS_INTEG
The TOE shall ensure that no application can write to an array view not having array view security attribute
ATTR_WRITABLE_VIEW.
The TOE shall ensure that an application can only write within the bounds of the array view.

O.GLOBAL_ARRAYS_INTEG
The TOE shall ensure that no application can store a reference to the APDU buffer, a global byte array created
by the user through makeGlobalArray method and the byte array used for invocation of the install method of
the selected applet.

6.2 SECURITY OBJECTIVES FOR THE OPERATIONAL ENVIRONMENT

6.2.1 Security Objectives for the Operational Environment from Java Card System
Protection Profile – Open Configuration

This section introduces the security objectives to be achieved by the environment and extracted from [PP-
JCS-Open].

OE.VERIFICATION
All the bytecodes shall be verified at least once, before the loading, before the installation or before the
execution, depending on the card capabilities, in order to ensure that each bytecode is valid at execution time.
See #.VERIFICATION for details.

Additionally the applet shall follow all recommendations, if any, mandated in the platform guidance for
maintaining the isolation property of the platform.
Application Note:
Constraints to maintain the isolation property of the platform are provided by the platform developer in
application development guidance. The constraints apply to all application code loaded in the platform.

OE.CAP_FILE
No CAP file loaded post-issuance shall contain native methods.

OE.CODE-EVIDENCE
For application code loaded pre-issuance, evaluated technical measures implemented by the TOE or audited
organizational measures must ensure that loaded application has not been changed since the code
verifications required in OE.VERIFICATION.
For application code loaded post-issuance and verified off-card according to the requirements of
OE.VERIFICATION, the verification authority shall provide digital evidence to the TOE that the application
code has not been modified after the code verification and that he is the actor who performed code verification.
For application code loaded post-issuance and partially or entirely verified on-card, technical measures must
ensure that the verification required in OE.VERIFICATION are performed. On-card bytecode verifier is out of
the scope of this Protection Profile.

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 33 / 60

Application Note:
For application code loaded post-issuance and verified off-card, the integrity and authenticity evidence can be
achieved by electronic signature of the application code, after code verification, by the actor who performed
verification.

6.2.2 Supplementary security objectives for the operational environment

6.2.2.1 Identification

OE.SID
All the subject (applet, or CAP file) should be uniquely identify before granting it access to any service.

6.2.2.2 Execution

OE.NATIVE
The only means that the Java Card VM shall provide for an application to execute native code is the invocation
of a method of the Java Card API, or any additional API. See #.NATIVE for details.

OE.OPERATE
It should be ensure the continued correct operation of the security functions. See #.OPERATE for details.

OE.REALLOCATION
The re-allocation of a memory block for the runtime areas of the Java Card VM should not disclose any
information that was previously stored in that block.

6.2.2.3 Applet management

OE.LOAD
The loading of a CAP file into the card should be safe.
Besides, for codes loaded post-issuance, the TOE shall verify the integrity and authenticity evidences
generated during the verification of the application CAP file by the verification authority. This verification by the
TOE shall occur during the load or late during the install process.OE.INSTALL
The installation of an applet performs should process as expected. (See #.INSTALL for details).
Besides, for codes loaded post-issuance, The integrity and authenticity evidences generated during the
verification of the application CAP file should be verify by the verification authority. If it is not performed during
the loading process, this verification should occur during the install process.

6.2.2.4 Services

OE.ALARM
Appropriate feedback information upon detection of a potential security violation shall be provided. See
#.ALARM for details.

6.2.2.5 CMGR

OE.CARD-MANAGEMENT
The card manager shall control the access to card management functions such as the installation, update or
deletion of applets. It shall also implement the card issuer's policy on the card.
The card manager is an application with specific rights, which is responsible for the administration of the smart
card. This component will in practice be tightly connected with the TOE, which in turn shall very likely rely on
the card manager for the effective enforcing of some of its security functions. Typically the card manager shall
be in charge of the life cycle of the whole card, as well as that of the installed applications (applets). The card
manager should prevent that card content management (loading, installation, deletion) is carried out, for
instance, at invalid states of the card or by non-authorized actors. It shall also enforce security policies
established by the card issuer.

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 34 / 60

6.2.2.6 SCP

OE.SCP.RECOVERY
If there is a loss of power, or if the smart card is withdrawn from the CAD while an operation is in progress, the
SCP must allow the TOE to eventually complete the interrupted operation successfully, or recover to a
consistent and secure state.
This security objective for the environment refers to the security aspect #.SCP(1): The smart card platform
must be secure with respect to the SFRs. Then after a power loss or sudden card removal prior to completion
of some communication protocol, the SCP will allow the TOE on the next power up to either complete the
interrupted operation or revert to a secure state.

OE.SCP.SUPPORT
The SCP shall support the TSFs of the TOE.
This security objective for the environment refers to the security aspects 2, 3, 4 and 5 of #.SCP:
(2) It does not allow the TSFs to be bypassed or altered and does not allow access to other low-level
functions than those made available by the CAP files of the API. That includes the protection of its private
data and code (against disclosure or modification) from the Java Card System.
(3) It provides secure low-level cryptographic processing to the Java Card System.
(4) It supports the needs for any update to a single persistent object or class field to be atomic, and possibly
a low-level transaction mechanism.
(5) It allows the Java Card System to store data in "persistent technology memory" or in volatile memory,
depending on its needs (for instance, transient objects must not be stored in non-volatile memory). The
memory model is structured and allows for low-level control accesses (segmentation fault detection).

6.3 SECURITY OBJECTIVES RATIONALE

6.3.1 Security objectives rationale from JCS Protection Profile – Open Configuration

O
.F

IR
E

W
A

L
L

O
.G

L
O

B
A

L
_
A

R
R

A
Y

S
_
IN

T
E

G

O
.A

R
R

A
Y

_
V

IE
W

_
C

O
N

F
ID

O
.A

R
R

A
Y

_
V

IE
W

S
_
IN

T
E

G

O
E

.N
A

T
IV

E

O
E

.C
A

R
D

_
M

A
N

A
G

E
M

E
N

T

O
E

.O
P

E
R

A
T

E

O
E

.S
ID

O
E

.A
L
A

R
M

O
E

.L
O

A
D

O
E

.S
C

P
.R

E
C

O
V

E
R

Y

O
E

.S
C

P
.S

U
P

P
O

R
T

O
E

.R
E

A
L
L
O

C
A

T
IO

N

O
E

.I
N

S
T

A
L
L

O
E

.V
E

R
IF

IC
A

T
IO

N

O
E

.C
A

P
_
F

IL
E

O
E

.C
O

D
E

-E
V

ID
E

N
C

E

T.CONFID-JCS-CODE X X X

T.CONFID-APPLI-DATA X X X X X X X X X X

T.CONFID-JCS-DATA X X X X X X X X

T.INTEG-APPLI-CODE X X X X

T.INTEG-JCS-CODE X X X X

T.INTEG-APPLI-DATA X X X X X X X X X X X X

T.INTEG-JCS-DATA X X X X X X X X X

T.INTEG-APPLI-CODE.LOAD X X X

T.INTEG-APPLI-DATA.LOAD X X X

T.SID.1 X X X X

T.SID.2 X X X X X X

T.EXE-CODE.1 X X

T.EXE-CODE.2 X

T.NATIVE X X X

OSP.VERIFICATION X X X

A.CAP_FILE X

A.VERIFICATION X X

Table 3: Threats, OSP, Assumptions vs Security Objectives

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 35 / 60

6.3.1.1 Threats

6.3.1.1.1 Confidentiality

T.CONFID-JCS-CODE
This threat is countered by the list of properties described in the (#.VERIFICATION) security aspect. Bytecode
verification ensures that each of the instructions used on the Java Card platform is used for its intended
purpose and in the intended scope of accessibility. As none of those instructions enables reading a piece of
code, no Java Card applet can therefore be executed to disclose a piece of code. Native applications are also
harmless because of the objective of environment (OE.NATIVE), so no application can be run to disclose a
piece of code.
The (#.VERIFICATION) security aspect is addressed in this ST by the objective for the environment
OE.VERIFICATION.
The objectives OE.CARD_MANAGEMENT and OE.VERIFICATION contribute to cover this threat by
controlling the access to card management functions and by checking the bytecode, respectively.

T.CONFID-APPLI-DATA This threat is countered by the security objective for the operational environment
regarding bytecode verification (OE.VERIFICATION). It is also covered by the isolation commitments stated
in the (O.FIREWALL) objective. It relies in its turn on the correct identification of applets stated in (OE.SID).
Moreover, as the firewall is dynamically enforced, it shall never stop operating, as stated in the (OE.OPERATE)
objective of environment.
As the firewall is a software tool automating critical controls, the objective of environment OE.ALARM asks for
it to provide clear warning and error messages, so that the appropriate counter-measure can be taken.
The objectives OE.CARD_MANAGEMENT and OE.VERIFICATION contribute to cover this threat by
controlling the access to card management functions and by checking the bytecode, respectively.
The objectives of environment OE.SCP.RECOVERY and OE.SCP.SUPPORT are intended to support the
OE.OPERATE and OE.ALARM objectives of environments of the TOE, so they are indirectly related to the
threats that these latter objectives contribute to counter.
If the PIN class of the Java Card API is used, the objective (O.FIREWALL) shall contribute in covering this
threat by controlling the sharing of the global PIN between the applets.
An applet might share data buffer with another applet using array views without the array view security attribute
ATTR_READABLE_VIEW. The disclosure of data of the applet creating the array view is prevented by the
security object O.ARRAY_VIEWS_CONFID.
Finally, any attempt to read a piece of information that was previously used by an application but has been
logically deleted is countered by the OE.REALLOCATION objective. That objective states that any information
that was formerly stored in a memory block shall be cleared before the block is reused.

T.CONFID-JCS-DATA This threat is covered by bytecode verification (OE.VERIFICATION) and the isolation
commitments stated in the (O.FIREWALL) security objective. This latter objective also relies in its turn on the
correct identification of applets stated in (OE.SID). Moreover, as the firewall is dynamically enforced, it shall
never stop operating, as stated in the (OE.OPERATE) objective of environment.
As the firewall is a software tool automating critical controls, the objective OE.ALARM asks for it to provide
clear warning and error messages, so that the appropriate counter-measure can be taken.
The objectives of environment OE.CARD_MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the bytecode, respectively.
The objectives OE.SCP.RECOVERY and OE.SCP.SUPPORT are intended to support the OE.OPERATE and
OE.ALARM objectives of environment of the TOE, so they are indirectly related to the threats that these latter
objectives contribute to counter.
Integrity

T.INTEG-APPLI-DATA This threat is countered by bytecode verification (OE.VERIFICATION) and the
isolation commitments stated in the (O.FIREWALL) objective. This latter objective also relies in its turn on the
correct identification of applets stated in (OE.SID). Moreover, as the firewall is dynamically enforced, it shall
never stop operating, as stated in the (OE.OPERATE) objective of environment.
As the firewall is a software tool automating critical controls, the objective OE.ALARM asks for it to provide
clear warning and error messages, so that the appropriate counter-measure can be taken.
The objectives OE.CARD_MANAGEMENT and OE.VERIFICATION contribute to cover this threat by
controlling the access to card management functions and by checking the bytecode, respectively.
The objective OE.CODE-EVIDENCE contributes to cover this threat by ensuring that the application code
loaded into the platform has not been changed after code verification, which ensures code integrity and

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 36 / 60

authenticity. The objectives OE.SCP.RECOVERY and OE.SCP.SUPPORT are intended to support the
OE.OPERATE and OE.ALARM objectives of environment of the TOE, so they are indirectly related to the
threats that these latter objectives contribute to counter.
If the PIN class of the Java Card API is used, the objective (O.FIREWALL) is also concerned.
Other application data that is sent to the applet as clear text arrives to the APDU buffer, which is a resource
shared by all applications. The integrity of the information stored in that buffer is ensured by the objective
O.GLOBAL_ARRAYS_INTEG.
An applet might share data buffer with another applet using array views without the array view security
attribute ATTR_WRITABLE_VIEW. The integrity of data of the applet creating the array view is ensured by
the security objective O.ARRAY_VIEWS_INTEG.
Finally, any attempt to read a piece of information that was previously used by an application but has been
logically deleted is countered by the OE.REALLOCATION objective. That objective states that any information
that was formerly stored in a memory block shall be cleared before the block is reused.

T.INTEG-JCS-DATA This threat is countered by bytecode verification (OE.VERIFICATION) and the isolation
commitments stated in the (O.FIREWALL) objective. This latter objective also relies in its turn on the correct
identification of applets stated in (OE.SID). Moreover, as the firewall is dynamically enforced, it shall never
stop operating, as stated in the (OE.OPERATE) objective.
As the firewall is a software tool automating critical controls, the objective OE.ALARM asks for it to provide
clear warning and error messages, so that the appropriate counter-measure can be taken.
The objectives OE.CARD_MANAGEMENT and OE.VERIFICATION contribute to cover this threat by
controlling the access to card management functions and by checking the bytecode, respectively.
The objective OE.CODE-EVIDENCE contributes to cover this threat by ensuring that the application code
loaded into the platform has not been changed after code verification, which ensures code integrity and
authenticity.
The objectives OE.SCP.RECOVERY and OE.SCP.SUPPORT are intended to support the OE.OPERATE and
OE.ALARM objectives of environment of the TOE, so they are indirectly related to the threats that these latter
objectives contribute to counter.

6.3.1.1.2 Integrity

T.INTEG-APPLI-CODE This threat is countered by the list of properties described in the (#.VERIFICATION)
security aspect. Bytecode verification ensures that each of the instructions used on the Java Card platform is
used for its intended purpose and in the intended scope of accessibility. As none of these instructions enables
modifying a piece of code, no Java Card applet can therefore be executed to modify a piece of code. Native
applications are also harmless because of the objective of environment (OE.NATIVE), so no application can
be run to modify a piece of code.
The (#.VERIFICATION) security aspect is addressed in this configuration by the objective for the environment
OE.VERIFICATION.
The objectives of environment OE.CARD_MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the bytecode, respectively.
The objective of environment OE.CODE-EVIDENCE contributes to cover this threat by ensuring that integrity
and authenticity evidences exist for the application code loaded into the platform.
T.INTEG-JCS-CODE This threat is countered by the list of properties described in the (#.VERIFICATION)
security aspect. Bytecode verification ensures that each of the instructions used on the Java Card platform is
used for its intended purpose and in the intended scope of accessibility. As none of these instructions enables
modifying a piece of code, no Java Card applet can therefore be executed to modify a piece of code. Native
applications are also harmless because of the objective of environment (OE.NATIVE), so no application can
be run to disclose or modify a piece of code.
The (#.VERIFICATION) security aspect is addressed in this configuration by the objective for the environment
OE.VERIFICATION.
The objectives of environment OE.CARD_MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the bytecode, respectively.
The objective of environment OE.CODE-EVIDENCE contributes to cover this threat by ensuring that the
application code loaded into the platform has not been changed after code verification, which ensures code
integrity and authenticity.

T.INTEG-APPLI-CODE.LOAD This threat is countered by the security objective of environment OE.LOAD
which ensures that the loading of CAP file is done securely and thus preserves the integrity of CAP file code.
The objective OE.CODE-EVIDENCE contributes to cover this threat by ensuring that the application code
loaded into the platform has not been changed after code verification, which ensures code integrity and

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 37 / 60

authenticity. By controlling the access to card management functions such as the installation, update or
deletion of applets the objective of environment OE.CARD_MANAGEMENT contributes to cover this threat.

T.INTEG-APPLI-DATA.LOAD This threat is countered by the security objective OE.LOAD which ensures that
the loading of CAP file is done securely and thus preserves the integrity of applications data.
The objective OE.CODE-EVIDENCE contributes to cover this threat by ensuring that the application code
loaded into the platform has not been changed after code verification, which ensures code integrity and
authenticity. By controlling the access to card management functions such as the installation, update or
deletion of applets the objective OE.CARD_MANAGEMENT contributes to cover this threat.

6.3.1.1.3 Identity usurpation

T.SID.1 As impersonation is usually the result of successfully disclosing and modifying some assets, this threat
is mainly countered by the objectives concerning the isolation of application data (like PINs), ensured by the
(O.FIREWALL). Uniqueness of subject-identity
(OE.SID) also participates to face this threat. It should be noticed that the AIDs, which are used for applet
identification, are TSF data.
In this configuration, usurpation of identity resulting from a malicious installation of an applet on the card is
covered by the objective OE.INSTALL.
The objective OE.CARD_MANAGEMENT contributes, by preventing usurpation of identity resulting from a
malicious installation of an applet on the card, to counter this threat.

T.SID.2 This is covered by integrity of TSF data, subject-identification (OE.SID), the firewall (O.FIREWALL)
and its good working order (OE.OPERATE).
The objective OE.INSTALL contributes to counter this threat by ensuring that installing an applet has no effect
on the state of other applets and thus can't change the TOE's attribution of privileged roles.
The objectives of environment OE.SCP.RECOVERY and OE.SCP.SUPPORT are intended to support the
OE.OPERATE objective of environment of the TOE, so they are indirectly related to the threats that this latter
objective contributes to counter.

6.3.1.1.4 Unauthorized execution

T.EXE-CODE.1 Unauthorized execution of a method is prevented by the objective OE.VERIFICATION. This
threat particularly concerns the point (8) of the security aspect #VERIFICATION (access modifiers and scope
of accessibility for classes, fields and methods). The O.FIREWALL objective is also concerned, because it
prevents the execution of non-shareable methods of a class instance by any subject apart from the class
instance owner.

T.EXE-CODE.2 Unauthorized execution of a method fragment or arbitrary data is prevented by the objective
OE.VERIFICATION. This threat particularly concerns those points of the security aspect related to control flow
confinement and the validity of the method references used in the bytecodes.

T.NATIVE This threat is countered by OE.NATIVE which ensures that a Java Card applet can only access
native methods indirectly that is, through an API. OE.CAP_FILE also covers this threat by ensuring that no
CAP files containing native code shall be loaded in post-issuance. In addition to this, the bytecode verifier also
prevents the program counter of an applet to jump into a piece of native code by confining the control flow to
the currently executed method (OE.VERIFICATION).

6.3.1.2 Organizational Security Policies

OSP.VERIFICATION This policy is upheld by the security objective of the environment OE.VERIFICATION
which guarantees that all the bytecodes shall be verified at least once, before the loading, before the installation
or before the execution in order to ensure that each bytecode is valid at execution time.

This policy is also upheld by the security objective of the environment OE.CODE-EVIDENCE which ensures
that evidences exist that the application code has been verified and not changed after verification, and by the
security objective of the environment OE.LOAD which shall ensure that the loading of a CAP file into the card
is safe.

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 38 / 60

6.3.1.3 Assumptions

A.VERIFICATION This assumption is upheld by the security objective on the operational environment
OE.VERIFICATION which guarantees that all the bytecodes shall be verified at least once, before the loading,
before the installation or before the execution in order to ensure that each bytecode is valid at execution time.
This assumption is also upheld by the security objective of the environment OE.CODE-EVIDENCE which
ensures that evidences exist that the application code has been verified and not changed after verification.
A.CAP_FILE This assumption is upheld by the security objective for the operational environment
OE.CAP_FILE which ensures that no CAP file loaded post-issuance shall contain native methods.

6.3.2 Compatibility between objectives of the TOE and objectives of [AQU-IC]

…

The O.FIREWALL and O.GLOBAL_ARRAYS_INTEG are objectives specific to the Java Card platform and it
do no conflict with the objectives of [AQU-IC]. We can therefore conclude that the objectives for the TOE and
[AQU-IC] are consistent.

6.3.3 Compatibility between objectives for the environment

OE.VERIFICATION, OE.CAP_FILE, OE.CODE-EVIDENCE, OE.SID, OE.NATIVE, OE.OPERATE,
OE.REALLOCATION, OE.LOAD, OE.INSTALL, OE.ALARM, OE.CARD-MANAGEMENT,
OE.SCP.RECOVERY, OE.SCP.SUPPORT are objectives specific to the Java Card platform and they do no
conflict with the objectives of [AQU-IC].

We can therefore conclude that the objectives for the environment of TOE and the objectives for the
environment of [AQU-IC] are consistent.

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 39 / 60

7 SECURITY REQUIREMENTS

7.1 SECURITY FUNCTIONAL REQUIREMENTS

For this section, a presentation choice has been selected. Each SFR may present a table with different type
of algorithms treated. For each case, there is no distinction regarding the technical objectives fulfilled by each
row on the table (thus algorithm family). The technical objectives are the same disregarding this differentiation.

7.2 SECURITY ASSURANCE REQUIREMENTS

The security assurance requirement level is EAL7.
The list of all the security assurance requirements for this security target is defined in the Table 4: Assurance
Level 7 (EAL7).
The entry “EAL7” means that this requirement is defined in the CC part 5
The entry “EAL7/PP” means that requirement is defined in both [CC-3] part and in [PP-JCS-Open] (or linked)
The entry “ST” means that the requirement is defined in this security target.

SAR Title
Required

by

ADV: Development

ADV_ARC.1 Security architecture description EAL7 / PP

ADV_FSP.6 Complete semi-formal functional specification with
additional formal specification

EAL7

ADV_IMP.2 Complete mapping of the implementation representation of
the TSF

EAL7

ADV_INT.3 Minimally complex internals EAL7

ADV_SPM.1 Formal TOE security policy model EAL7

ADV_TDS.6 Complete semiformal modular design with formal high-level
design presentation

EAL7

AGD: Guidance
documents

AGD_OPE.1 Operational user guidance EAL7 / PP

AGD_PRE.1 Preparative procedures EAL7 / PP

ALC: Life-cycle
support

ALC_CMC.5 Advanced support EAL7

ALC_CMS.5 Development tools CM coverage EAL7

ALC_DEL.1 Delivery procedures EAL7 / PP

ALC_DVS.2 Sufficiency of security measures EAL7

ALC_LCD.2 Measurable life-cycle model EAL7 / PP

ALC_TAT.3 Compliance with implementation standards - all parts EAL7

ASE: Security
Target evaluation

ASE_CCL.1 Conformance claims EAL7 / PP

ASE_ECD.1 Extended components definition EAL7 / PP

ASE_INT.1 ST introduction EAL7 / PP

ASE_OBJ.2 Security objectives EAL7 / PP

ASE_REQ.2 Derived security requirements EAL7 / PP

ASE_SPD.1 Security problem definition EAL7 / PP

ASE_TSS.1 TOE summary specification ST

ATE: Tests

ATE_COV.3 Rigorous analysis of coverage EAL7

ATE_DPT.4 Testing: implementation representation EAL7

ATE_FUN.2 Ordered functional testing EAL7

ATE_IND.3 Independent testing - complete EAL7 / PP

AVA: Vulnerability
assessment

AVA_VAN.5 Advanced methodical vulnerability analysis
EAL7

Table 4: Assurance Level 7 (EAL7)

Among the set of assurance components chosen for EAL7, the assignment appears only in

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 40 / 60

ADV_SPM.1. The assignment used in ADV_SPM.1 is defined as follows:

ADV_SPM.1 Formal TOE security policy model
Dependencies: ADV_FSP.4

Developer action elements:

ADV_SPM.1.1D The developer shall provide a formal security policy model for the Virtual
Machine Access Policy:

• Access Control Policy: FDP_ACC.2/FIREWALL,
FDP_ACF.1/FIREWALL

• Flow control: FDP_IFC.1/JCVM, FDP_IFF.1/JCVM
• Security Attributes: FMT_MSA.1/JCRE, FMT_MSA.1/JCVM,

FMT_MSA.2/FIREWALL_JCVM, FMT_MSA.3/FIREWALL,
FMT_MSA.3/JCVM

• Security roles: FMT_SMR.1/JCRE
• Management Functions: FMT_SMF.1/CORE_LC

• TSF Data: FMT_MTD.1/JCRE

Note: For this formal modelisation, we focus on JCVM opcode processing. The Applet Install,
Delete and APIs are out the scope of this modelisation. The initial settings (the Selected
Applet Context and the initial active applet) are also out of the scope because done before
the JCVM entering (selection of the applet).

 Note: For this formal modelisation, the SPM scope will be considering one VM execution

ADV_SPM.1.2D For each policy covered by the formal security policy model, the model shall

identify the relevant portions of the statement of SFRs that make up that
policy.

ADV_SPM.1.3D The developer shall provide a formal proof of correspondence between the
model and any formal functional specification.

ADV_SPM.1.4D The developer shall provide a demonstration of correspondence between the
model and the functional specification.

The other SFRs of the MultiApp V5.1 defined in [ST-MAV51] and linked to O.FIREWALL are not
linked to this TOE: FMT_MSA.1/ADEL, FMT_MSA.3/ADEL, FMT_SMR.1/ADEL,
FMT_SMF.1/ADEL, FMT_MSA.1/CM, FMT_MSA.3/CM, FMT_SMR.1/CM, FMT_SMF.1/CM,
FDP_ITC.2/Installer, FMT_SMR.1/Installer, FMT_SMR.1, FMT_SMF.1, are out of the scope of the
SPM as they are linked to the applet loading or deletion that is out of scope of the SPM boundaries
limited to VM opcodes

The SFR FMT_MTD.3/JCRE is out of scope of the SPM modelisation because AID registry is created during
loading phase, which is also out of scope of the SPM (Hypothesis 2 of the SPM document [MAV51_SPM]).

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 41 / 60

7.2.1 Security Functional Requirements from PP Java Card System – Open
configuration

This section states the security functional requirements for the Java Card System – Open configuration.

Group Description

Core with Logical
Channels (CoreG_LC)

The CoreG_LC contains the requirements concerning the runtime environment of the Java
Card System implementing logical channels. This includes the firewall policy and the
requirements related to the Java Card API. Logical channels are a Java Card specification
version 2.2 feature. This group is the union of requirements from the Core (CoreG) and the
Logical channels (LCG) groups defined in [PP-JCS-Open].

(cf Java Card System Protection Profile Collection [PP JCS]).

Installation (InstG) The InstG contains the security requirements concerning the installation of post-issuance
applications. It does not address card management issues in the broad sense, but only those
security aspects of the installation procedure that are related to applet execution.

Applet deletion
(ADELG)

The ADELG contains the security requirements for erasing installed applets from the card,
a feature introduced in Java Card specification version 2.2.

Object deletion
(ODELG)

The ODELG contains the security requirements for the object deletion capability. This
provides a safe memory recovering mechanism. This is a Java Card specification version
2.2 feature.

Secure carrier (CarG) The CarG group contains minimal requirements for secure downloading of applications on
the card. This group contains the security requirements for preventing, in those
configurations that do not support on-card static or dynamic bytecodes verification, the
installation of a package that has not been bytecode verified, or that has been modified after
bytecode verification.

Smart Card Platform
(SCPG)

The SCPG group contains the security requirements for the smart card platform, that is,
operating system and chip that the Java Card System is implemented upon.

Card Manager
(CMGRG)

The CMGRG group contains the security requirements for the card manager.

Additional SFR (ASFR) The ASFR group contains security requirements related to specific API and to random
generation

The SFRs refer to all potentially applicable subjects, objects, information, operations and security attributes.

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 42 / 60

Subjects are active components of the TOE that (essentially) act on the behalf of users. The users of the TOE
include people or institutions (like the applet developer, the card issuer, the verification authority), hardware
(like the CAD where the card is inserted or the PCD) and software components (like the application packages
installed on the card). Some of the users may just be aliases for other users. For instance, the verification
authority in charge of the bytecode verification of the applications may be just an alias for the card issuer.
Subjects (prefixed with an "S") are described in the following table:

Subject Description

S.ADEL The applet deletion manager which also acts on behalf of the card issuer. It may be
an applet ([JCRE22], §11), but its role asks anyway for a specific treatment from the
security viewpoint.

S.APPLET Any applet instance.

S.BCV The bytecode verifier (BCV), which acts on behalf of the verification authority who is
in charge of the bytecode verification of the CAP files.

S.CAD The CAD represents off-card entity that communicates with the S.INSTALLER.

S.INSTALLER The installer is the on-card entity which acts on behalf of the card issuer. This subject
is involved in the loading of CAP files and installation of applets.

S.JCRE The runtime environment on which Java programs in a smart card are executed.

S.JCVM The bytecode interpreter that enforces the firewall at runtime.

S.LOCAL Operand stack of a JCVM frame, or local variable of a JCVM frame containing an
object or an array of references.

S.MEMBER Any object's field, static field or array position.

S.CAP_FILE A CAP file may contain multiple Java language packages. A package is a

namespace within the Java programming language that may contain classes

and interfaces. A CAP file may contain packages that define either a user

library, or one or several applets. A CAP file compliant with Java Card

Specifications version 3.1 may contain multiple Java language packages. An

EXTENDED CAP file as specified in Java Card Specifications version 3.1

may contain only applet packages, only library packages or a combination of

library packages. A COMPACT CAP file as specified in Java Card

Specifications version 3.1 or CAP files compliant to previous versions of Java

Card Specification, MUST contain only a single package representing a library

or one or more applets.

Objects (prefixed with an "O") are described in the following table:

Object Description

O.APPLET Any installed applet, its code and data.

O.CODE_CAP_FILE The code of a CAP file, including all linking information. On the Java Card platform, a
CAP file is the installation unit.

O.JAVAOBJECT Java class instance or array. It should be noticed that KEYS, PIN, arrays and applet
instances are specific objects in the Java programming language.

Information (prefixed with an "I") is described in the following table:

Information Description

I.APDU Any APDU sent to or from the card through the communication channel.

I.DATA JCVM Reference Data: objective addresses of APDU buffer, JCRE-owned instances
of APDU class and byte array for install method

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 43 / 60

Security attributes linked to these subjects, objects and information are described in the following table with
their values (used in enforcing the SFRs):

Security attribute Description/Value

Active Applets The set of the active applets' AIDs. An active applet is an applet that is selected on
at least one of the logical channels.

Applet Selection Status "Selected" or "Deselected"

Applet's version number The version number of an applet indicated in the export file

Class Identifies the implementation class of the remote object.

Context CAP file AID, or "Java Card RE"

Currently Active Context CAP file AID, or "Java Card RE"

Dependent package AID Allows the retrieval of the package AID and Applet's version number ([JCVM3],
§4.5.2).

ExportedInfo Boolean (Indicates whether the remote object is exportable or not).

Identifier The Identifier of a remote object or method is a number that uniquely identifies a
remote object or method, respectively.

LC Selection Status Multiselectable, Non-multiselectable or "None".

LifeTime CLEAR_ON_DESELECT or PERSISTENT (*).

Owner The Owner of an object is either the applet instance that created the object or the
CAP file (library) where it has been defined (these latter objects can only be arrays
that initialize static fields of the CAP file). The owner of a remote object is the applet
instance that created the object.

CAP File AID The AID of a CAP file.

Package AID The AID of each package indicated in the export file

Registered applets The set of AID of the applet instance registered on the card

Resident CAP files The set of AIDs of the CAP files already loaded on the card.

Selected Applet Context CAP File AID, or "None"

Sharing Standards, SIO, Arraw view, Java Card RE entry point, or global array

Static References Static fields of a CAP file may contain references to objects. The Static References
attribute records those references.

(*) Transient objects of type CLEAR_ON_RESET behave like persistent objects in that they can be accessed
only when the Currently Active Context is the object's context.

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 44 / 60

Operations (prefixed with "OP") are described in the following table. Each operation has a specific number of
parameters given between brackets, among which there is the "accessed object", the first one, when
applicable. Parameters may be seen as security attributes that are under the control of the subject performing
the operation.

Operation Description

OP.ARRAY_ACCESS(O.JAVAOBJECT, field) Read/Write an array component.

OP.ARRAY_LENGTH (O.JAVAOBJECT, field) Get length of an array component.

OP.ARRAY_AASTORE(O.JAVAOBJECT, field) Store into reference array component

OP.ARRAY_T_ALOAD(O.JAVAOBJECT, field) Read from an array component

OP.ARRAY_T_ASTORE(O.JAVAOBJECT, field) Write to an array component

OP.CREATE(Sharing, LifeTime) (*) Creation of an object (new or makeTransient or
createArrawView call).

OP.DELETE_APPLET(O.APPLET,...) Delete an installed applet and its objects, either
logically or physically.

OP.DELETE_CAP_FILE(O.CODE_CAP_FILE,...) Delete a CAP file, either logically or physically.

OP.DELETE_CAP_FILE_APPLET(O.CODE_CAP_FILE,...) Delete a CAP file and its installed applets, either
logically or physically.

OP.INSTANCE_FIELD(O.JAVAOBJECT, field) Read/Write a field of an instance of a class in the
Java programming language

OP.INVK_VIRTUAL(O.JAVAOBJECT, method, arg1,...) Invoke a virtual method (either on a class instance
or an array object)

OP.INVK_INTERFACE(O.JAVAOBJECT, method, arg1,...) Invoke an interface method.

OP.JAVA(...) Any access in the sense of [JCRE3], §6.2.8. It
stands for one of the operations
OP.ARRAY_ACCESS, OP.INSTANCE_FIELD,

OP.INVK_VIRTUAL, OP.INVK_INTERFACE,
OP.THROW, OP.TYPE_ACCESS.

OP.PUT(S1,S2,I) Transfer a piece of information I from S1 to S2.

OP.THROW(O.JAVAOBJECT) Throwing of an object (throw, see
[JCRE3],§6.2.8.7)

OP.TYPE_ACCESS(O.JAVAOBJECT, class) Invoke checkcast or instanceof on an object in order
to access to classes (standard or shareable
interfaces objects).

(*) For this operation, there is no accessed object. This rule enforces that shareable transient objects are not
allowed. For instance, during the creation of an object, the JavaCardClass attribute's value is chosen by the
creator.

7.2.1.1 CoreG_LC Security Functional Requirements

This group is focused on the main security policy of the Java Card System, known as the firewall. This policy
essentially concerns the security of installed applets. The policy focuses on the execution of bytecodes.

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 45 / 60

7.2.1.1.1 Firewall Policy

FDP_ACC.2/FIREWALL Complete access control

FDP_ACC.2.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP on S.CAP_FILE,
S.JCRE, S.JCVM, O.JAVAOBJECT and all operations among subjects and objects covered by the SFP.

Refinement:
The operations involved in the policy are:

• OP.CREATE,

• OP.INVK_INTERFACE,

• OP.INVK_VIRTUAL,

• OP.JAVA,

• OP.THROW,

• OP.TYPE_ACCESS.

• OP.ARRAY_LENGTH

• OP.ARRAY_T_ALOAD

• OP.ARRAY_T_ASTORE

• OP.ARRAY_AASTORE

FDP_ACC.2.2/FIREWALL The TSF shall ensure that all operations between any subject controlled by the
TSF and any object controlled by the TSF are covered by an access control SFP.
Application note:
Accessing array's components of a static array, and more generally fields and methods of static objects, is an
access to the corresponding O.JAVAOBJECT.

FDP_ACF.1/FIREWALL Security attribute based access control

FDP_ACF.1.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP to objects based on
the following:

Subject/Object Attributes

S.CAP_FILE LC Applet Selection Status

S.JCVM ActiveApplets, Currently Active Context

S.JCRE Selected Applet Context

O.JAVAOBJECT Sharing, Context, LifeTime

FDP_ACF.1.2/FIREWALL The TSF shall enforce the following rules to determine if an operation among
controlled subjects and controlled objects is allowed:

• R.JAVA.1 ([JCRE3]§6.2.8) An S.CAP_FILE may freely perform any of OP.ARRAY_ACCESS,
OP.INSTANCE_FIELD, OP.INVK_VIRTUAL, OP.INVK_INTERFACE, OP.THROW or
OP.TYPE_ACCESS upon any O.JAVAOBJECT whose Sharing attribute has value "JCRE entry
point" or "global array".

• R.JAVA.2 ([JCRE3]§6.2.8) An S.CAP_FILE may freely perform any of OP.ARRAY_ACCESS,
OP.INSTANCE_FIELD, OP.INVK_VIRTUAL, OP.INVK_INTERFACE or OP.THROW upon any
O.JAVAOBJECT whose Sharing attribute has value "Standard" and whose Lifetime attribute
has value "PERSISTENT" only if O.JAVAOBJECT's Context attribute has the same value as the
active context.

• R.JAVA.3 ([JCRE3]§6.2.8.10) An S.CAP_FILE may perform OP.TYPE_ACCESS upon an
O.JAVAOBJECT with Context attribute different from the currently active context, whose
Sharing attribute has value "SIO" only if O.JAVAOBJECT is being cast into (checkcast) or is
being verified as being an instance of (instanceof) an interface that extends the Shareable
interface.

• R.JAVA.4 ([JCRE3], §6.2.8.6,) An S.CAP_FILE may perform OP.INVK_INTERFACE upon an
O.JAVAOBJECT with Context attribute different from the currently active context, whose
Sharing attribute has the value "SIO", and whose Context attribute has the value "CAP file AID",

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 46 / 60

only if the invoked interface method extends the Shareable interface and one of the following
applies:

(a) The value of the attribute Selection Status of the CAP file whose AID is "Package AID" is
"Multiselectable»,

(b) The value of the attribute Selection Status of the CAP file whose AID is "Package AID' is
"Non-multiselectable», and either "CAP file AID" is the value of the currently selected
applet or otherwise "CAP file AID" does not occur in the attribute ActiveApplets.

• R.JAVA.5 An S.CAP_FILE may perform an OP.CREATE only if the value of the Sharing
parameter(*) is "Standard".

• R.JAVA.6 ([JCRE3], §6.2.8): S.CAP_FILE may freely perform OP.ARRAY_ACCESS or
OP.ARRAY_LENGTH upon any O.JAVAOBJECT whose Sharing attribute has value "global
array".

Application Note (R.JAVA.4): The initial setting of security attributes ActiveApplets and
Selected Applet Context are initialized by SELECT APDU and MANAGE_CHANNEL, which are
out of SPM scope. The ActiveApplets and Selected Applet Context are never changed in the
VM scope.

FDP_ACF.1.3/FIREWALL The TSF shall explicitly authorize access of subjects to objects based on the
following additional rules:

1) The subject S.JCRE can freely perform OP.JAVA(...) and OP.CREATE, with the exception given
in FDP_ACF.1.4/FIREWALL, provided it is the Currently Active Context.

2) The only means that the subject S.JCVM shall provide for an application to execute native code
is the invocation of a Java Card API method (through OP.INVK_INTERFACE or
OP.INVK_VIRTUAL).

FDP_ACF.1.4/FIREWALL The TSF shall explicitly deny access of subjects to objects based on the following
additional rules:

1) Any subject with OP.JAVA upon an O.JAVAOBJECT whose LifeTime attribute has value
"CLEAR_ON_DESELECT" if O.JAVAOBJECT's Context attribute is not the same as the
Selected Applet Context.

2) Any subject attempting to create an object by the means of OP.CREATE and a
"CLEAR_ON_DESELECT" LifeTime parameter if the active context is not the same as the
Selected Applet Context.

Application note: This rule is out of scope of the SPM modelisation because
CLEAR_ON_DESELECT objects can be created exclusively in the API, which is also out of scope
(Hypothesis 4 of the SPM document [MAV51_SPM])..
3) S.CAP_FILE performing OP.ARRAY_AASTORE of the reference of an O.JAVAOBJECT whose

sharing attribute has value “global array” or “Temporary JCRE entry point”.
4) S.CAP_FILE performing OP.PUTFIELD or OP.PUTSTATIC of the reference of an

O.JAVAOBJECT whose sharing attribute has value “global array” or “Temporary JCRE entry
point”

5) R.JAVA.7 ([JCRE3], §6.2.8.2): S.CAP_FILE performing OP.ARRAY_T_ASTORE of the
reference of an O.JAVAOBJECT, or a primitive value when the O.JAVAOBJECT is an array
view without ATTR_WRITABLE_VIEW access attribute.

6) R.JAVA.8 ([JCRE3], §6.2.8.2):S.CAP_FILE performing OP.ARRAY_T_ALOAD of the reference
of an O.JAVAOBJECT, or a primitive value when the O.JAVAOBJECT is an array view without
ATTR_READABLE_VIEW access attribute.

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 47 / 60

Application note: FDP_ACF.1.4/FIREWALL:

The initial setting of security attribute Selected Applet Context is initilized by SELECT APDU, which is
out of SPM scope. Selected Applet Context is never changed in the VM scope.

The deletion of applets may render some O.JAVAOBJECT inaccessible, and the Java Card RE may be in
charge of this aspect. This can be done, for instance, by ensuring that references to objects belonging to a
deleted application are considered as a null reference. Such a mechanism is implementation-dependent.
The deletion of applets is out of scope of this SPM scope.

In the case of an array type, fields are components of the array ([JVM], §2.14, §2.7.7), as well as the length;
the only methods of an array object are those inherited from the Object class.

The Sharing attribute defines five categories of objects:

• Standard ones, whose both fields and methods are under the firewall policy,

• Shareable interface Objects (SIO), which provide a secure mechanism for inter-applet communication,

• JCRE entry points (Temporary or Permanent), who have freely accessible methods but protected fields,

• Global arrays, having both unprotected fields (including components; refer to JavaCardClass discussion
above) and methods.

• Array Views, having fields/elements access controlled by access control attributes,

ATTR_READABLE_VIEW and ATTR_WRITABLE_VIEW and methods.

When a new object is created, it is associated with the Currently Active Context. But the object is owned by
the applet instance within the Currently Active Context when the object is instantiated ([JCRE3], §6.1.3). An
object is owned by an applet instance, by the JCRE or by the CAP file library where it has been defined (these
latter objects can only be arrays that initialize static fields of CAP file).

([JCRE3], Glossary) Selected Applet Context. The Java Card RE keeps track of the currently selected Java
Card applet. Upon receiving a SELECT command with this applet's AID, the Java Card RE makes this applet
the Selected Applet Context. The Java Card RE sends all APDU commands to the Selected Applet Context.

While the expression "Selected Applet Context" refers to a specific installed applet, the relevant aspect to the
policy is the context (CAP file AID) of the selected applet. In this policy, the "Selected Applet Context" is the
AID of the selected CAP file.
([JCRE3], §6.1.2.1) At any point in time, there is only one active context within the Java Card VM (this is called
the Currently Active Context).

It should be noticed that the invocation of static methods (or access to a static field) is not considered by this
policy, as there are no firewall rules. They have no effect on the active context as well and the "acting CAP
file" is not the one to which the static method belongs to in this case.
The Java Card platform, version 2.2.x introduces the possibility for an applet instance to be selected on multiple
logical channels at the same time, or accepting other applets belonging to the same CAP file being selected
simultaneously. These applets are referred to as multiselectable applets. Applets that belong to a same CAP
file are either all multiselectable or not ([JCVM3], §2.2.5). Therefore, the selection mode can be regarded as
an attribute of CAP file. No selection mode is defined for a library CAP file.

An applet instance will be considered an active applet instance if it is currently selected in at least one logical
channel. An applet instance is the currently selected applet instance only if it is processing the current
command. There can only be one currently selected applet instance at a given time. ([JCRE3], §4).

FDP_IFC.1/JCVM Subset information flow control

FDP_IFC.1.1/JCVM The TSF shall enforce the JCVM information flow control SFP on S.JCVM, S.LOCAL,
S.MEMBER, I.DATA and OP.PUT (S1, S2, I).

Application note:
References of temporary Java Card RE entry points, which cannot be stored in class variables, instance
variables or array components, are transferred from the internal memory of the Java Card RE (TSF data) to
some stack through specific APIs (Java Card RE owned exceptions) or Java Card RE invoked methods (such
as the process (APDU apdu)); these are causes of OP.PUT (S1, S2, I) operations as well.

FDP_IFF.1/JCVM Simple security attributes

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 48 / 60

FDP_IFF.1.1/JCVM The TSF shall enforce the JCVM information flow control SFP based on the following
types of subject and information security attributes:

Subject / Information Description

S.JCVM Currently active context.

FDP_IFF.1.2/JCVM The TSF shall permit an information flow between a controlled subject and controlled
information via a controlled operation if the following rules hold:

• An operation OP.PUT (S1, S.MEMBER, I.DATA) is allowed if and only if the active context is
"Java Card RE";

• Other OP.PUT operations are allowed regardless of the Currently Active Context's value.

FDP_IFF.1.3/JCVM The TSF shall enforce no additional information flow control SFP rules.

FDP_IFF.1.4/JCVM The TSF shall explicitly authorize an information flow based on the following rules: no
additional information flow control SFP rules.

FDP_IFF.1.5/JCVM The TSF shall explicitly deny an information flow based on the following rules: no
additional information flow control SFP rules.

Application Note:

The storage of temporary Java Card RE-owned objects references is runtime-enforced ([JCRE3], §6.2.8.1-3).

It should be noticed that this policy essentially applies to the execution of bytecode. Native methods, the Java Card RE itself and possibly
some API methods can be granted specific rights or limitations through the FDP_IFF.1.3/JCVM to FDP_IFF.1.5/JCVM elements. The way
the Java Card virtual machine manages the transfer of values on the stack and local variables (returned values, uncaught exceptions)
from and to internal registers is implementation-dependent. For instance, a returned reference, depending on the implementation of the
stack frame, may transit through an internal register prior to being pushed on the stack of the invoker. The returned bytecode would
cause more than one OP.PUT operation under this scheme.

FMT_MSA.1/JCRE Management of security attributes

FMT_MSA.1.1/JCRE The TSF shall enforce the FIREWALL access control SFP to restrict the ability to
modify the security attributes the Selected Applet Context to the Java Card RE (S.JCRE).

Application note:
The modification of the Selected Applet Context is performed in accordance with the rules given in [JCRE3],
§4 and [JCVM3], §3.4.

The initial setting of security attribute the Selected Applet Context is initialized by SELECT APDU and
MANAGE_CHANNEL, which are out of SPM scope. The the Selected Applet Context is never changed
in the VM scope.

FMT_MSA.1/JCVM Management of security attributes

FMT_MSA.1.1/JCVM The TSF shall enforce the FIREWALL access control SFP and the JCVM information
flow control SFP to restrict the ability to modify the security attributes the currently active context security
attributes to the Java Card VM (S.JCVM).

Application note:

The modification of the Selected Applet Context is performed in accordance with the rules given in [JCRE3],
§4 and [JCVM3], §3.4.
The initial setting of security attribute ActiveApplets is initilized by SELECT APDU and
MANAGE_CHANNEL, which are out of SPM scope. The ActiveApplets is never changed in the VM
scope.

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 49 / 60

FMT_MSA.2/FIREWALL_JCVM Secure security attributes

FMT_MSA.2.1/FIREWALL_JCVM The TSF shall ensure that only secure values are accepted for all the
security attributes of subjects and objects defined in the FIREWALL access control SFP and the JCVM
information flow control SFP.

FMT_MSA.3/FIREWALL Static attribute initialization

FMT_MSA.3.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP to provide restrictive
default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/FIREWALL[Editorially Refined] The TSF shall not allow any role to specify alternative initial
values to override the default values when an object or information is created.

Application Note:
FMT_MSA.3.1/FIREWALL

• Objects' security attributes of the access control policy are created and initialized at the creation of
the object or the subject. Afterwards, these attributes are no longer mutable (FMT_MSA.1/JCRE). At
the creation of an object (OP.CREATE), the newly created object, assuming that the FIREWALL
access control SFP permits the operation, gets its Lifetime and Sharing attributes from the
parameters of the operation; on the contrary, its Context attribute has a default value, which is its
creator's Context attribute and AID respectively ([JCRE3], §6.1.3). There is one default value for the
Selected Applet Context that is the default applet identifier's Context, and one default value for the
Currently Active Context that is "Java Card RE".

• The knowledge of which reference corresponds to a temporary entry point object or a global array
and which does not is solely available to the Java Card RE (and the Java Card virtual machine).

FMT_MSA.3.2/FIREWALL

• The intent is that none of the identified roles has privileges with regard to the default values of the
security attributes. It should be noticed that creation of objects is an operation controlled by the
FIREWALL access control SFP. The operation shall fail anyway if the created object would have had
security attributes whose value violates FMT_MSA.2.1/FIREWALL_JCVM.

FMT_MSA.3/JCVM Static attribute initialization

FMT_MSA.3.1/JCVM The TSF shall enforce the JCVM information flow control SFP to provide restrictive
default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/JCVM[Editorially Refined] The TSF shall not allow any role to specify alternative initial values
to override the default values when an object or information is created.

FMT_SMR.1/JCRE Security roles

FMT_SMR.1.1/JCRE The TSF shall maintain the roles:

• the Java Card RE (JCRE).

• the Java Card VM (JCVM).

FMT_SMR.1.2/JCRE The TSF shall be able to associate users with roles.

FMT_SMF.1/CORE_LC Specification of Management Functions

FMT_SMF.1.1/Core_LC The TSF shall be capable of performing the following management functions:

• Modify the Currently Active Context

Note: the Selected Applet context is out of scope of the VM functionalities. It is a process that occurs prior to
VM start

The initial setting of security attributes ActiveApplets and Selected Applet Context are initilized by
SELECT APDU and MANAGE_CHANNEL, which are out of SPM scope. The ActiveApplets and
Selected Applet Context are never changed in the VM scope.

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 50 / 60

7.2.1.1.2 Application Programming Interface

The following SFRs are related to the Java Card API.
The execution of the additional native code is not within the TSF. Nevertheless, access to API native methods
from the Java Card System is controlled by TSF because there is no difference between native and interpreted
methods in the interface or the invocation mechanism.

FMT_MTD.1/JCRE Management of TSF data

FMT_MTD.1.1/JCRE The TSF shall restrict the ability to modify the list of registered applets' AIDs to the
JCRE.

Application Note:

• The installer and the Java Card RE manage other TSF data such as the applet life cycle or CAP files,

but this management is implementation specific. Objects in the Java programming language may
also try to query AIDs of installed applets through the lookupAID(...) API method.

• The installer, applet deletion manager or even the card manager may be granted the right to modify

the list of registered applets' AIDs in specific implementations (possibly needed for installation and
deletion; see #.DELETION and #.INSTALL).

• The DELETE and INSTALL APDU commands are out of scope of this SPM. The list of

registred applets’ AIDs is proven to be not modified during the execution inside the VM.

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 51 / 60

7.3 SECURITY REQUIREMENTS RATIONALE

7.3.1 OBJECTIVES for PP JCS – OPEN Configuration

O
.F

IR
E

W
A

L
L

O
.G

L
O

B
A

L
_
A

R
R

A
Y

S
_
IN

T
E

G

O
.A

R
R

A
Y

_
V

IE
W

S
_
C

O
N

F
ID

O
.A

R
R

A
Y

_
V

IE
W

S
_
IN

T
E

G

FDP_IFC.1/JCVM X X X X

FDP_IFF.1/JCVM X X X X

FMT_MSA.2/FIREWALL_JCVM X

FMT_MSA.3/FIREWALL X

FMT_MSA.3/JCVM X

FMT_SMR.1/JCRE X

FMT_SMF.1/CORE_LC X

FMT_MTD.1/JCRE X

FDP_ACC.2/FIREWALL X

FDP_ACF.1/FIREWALL X

FMT_MSA.1/JCRE X

FMT_MSA.1/JCVM X

Table 5: rationale objective vs. SFR

7.3.1.1 SECURITY OBJECTIVES FOR THE TOE

O.FIREWALL This objective is met by the FIREWALL access control policy (FDP_ACC.2/FIREWALL and
FDP_ACF.1/FIREWALL), the JCVM information flow control policy (FMT_MSA.1/JCVM, FDP_IFF.1/JCVM,
FDP_IFC.1/JCVM). The functional requirements of the class FMT (FMT_MTD.1/JCRE,FMT_SMR.1/JCRE,
FMT_SMF.1/CORE_LC, FMT_MSA.2/FIREWALL_JCVM, FMT_MSA.3/FIREWALL, FMT_MSA.3/JCVM,
FMT_MSA.1/JCRE) also indirectly contribute to meet this objective.

O.GLOBAL_ARRAYS_INTEG This objective is met by the JCVM information flow control policy
(FDP_IFF.1/JCVM, FDP_IFC.1/JCVM), which prevents an application from keeping a pointer to the APDU
buffer of the card, to the global byte array of the applet's install method or to the global arrays created by the
JCSystem.makeGlobalArray(…) method. Such a pointer could be used to access and modify it when the buffer
is being used by another application.

O.ARRAY_VIEWS_CONFID Array views have security attributes of temporary objects where the JCVM
information flow control policy (FDP_IFF.1/JCVM, FDP_IFC.1/JCVM) prevents an application from storing a
reference to the array view. Furthermore, array views may not have ATTR_READABLE_VIEW security
attribute which ensures that no application can read the contents of the array view.

O.ARRAY_VIEWS_INTEG Array views have security attributes of temporary objects where the JCVM
information flow control policy (FDP_IFF.1/JCVM, FDP_IFC.1/JCVM) prevents an application from storing a

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 52 / 60

reference to the array view. Furthermore, array views may not have ATTR_WRITABLE_VIEW security attribute
which ensures that no application can alter the contents of the array view.

7.3.2 DEPENDENCIES for PP JCS-OPEN CONFIGURATION

7.3.2.1 SFRS DEPENDENCIES

Requirements CC dependencies Satisfied dependencies

FDP_ACC.2/FIREWALL FDP_ACF.1 FDP_ACF.1/FIREWALL

FDP_ACF.1/FIREWALL FDP_ACC.1, FMT_MSA.3 FDP_ACC.2/FIREWALL,
FMT_MSA.3/FIREWALL

FDP_IFC.1/JCVM FDP_IFF.1 FDP_IFF.1/JCVM

FDP_IFF.1/JCVM FDP_IFC.1, FMT_MSA.3 FDP_IFC.1/JCVM,
FMT_MSA.3/JCVM

FMT_MSA.1/JCVM (FDP_ACC.1 or FDP_IFC.1),
FMT_SMF.1, FMT_SMR.1

FDP_ACC.2/FIREWALL,
FDP_IFC.1/JCVM,
FMT_SMF.1/CORE_LC,
FMT_SMR.1/JCRE

FMT_MSA.1/JCRE (FDP_ACC.1 or FDP_IFC.1),
FMT_SMF.1, FMT_SMR.1

FDP_IFC.1/JCVM,
FMT_SMR.1/JCRE,
FMT_SMF.1/CORE_LC,
FDP_ACC.2/FIREWALL

FMT_MSA.2/FIREWALL_JCVM

(FDP_ACC.1 or FDP_IFC.1),
FMT_MSA.1, FMT_SMR.1

FDP_ACC.2/FIREWALL,

FDP_IFC.1/JCVM,
FMT_MSA.1/JCRE,

FMT_SMR.1/JCRE

FMT_MSA.3/FIREWALL
FMT_MSA.1, FMT_SMR.1

FMT_MSA.1/JCRE,
FMT_MSA.1/JCVM,
FMT_SMR.1/JCRE

FMT_MSA.3/JCVM
FMT_MSA.1, FMT_SMR.1

FMT_MSA.1/JCVM,
FMT_SMR.1/JCRE

FMT_MTD.1/JCRE
FMT_SMF.1, FMT_SMR.1

FMT_SMR.1/JCRE,
FMT_SMF.1/CORE_LC

FMT_SMR.1/JCRE FIA_UID.1 None(*)

FMT_SMF.1/CORE_LC none

Table 6: SFR dependencies

(*) The User identification is the responsibility of the Platform MultiApp V5.1. This identification is done before
acceding the Virtual Machine thanks to the SFR: FIA_UID.2/AID User identification before any action (see
[ST_MAV5]

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 53 / 60

7.3.3 Compatibility between SFR of TOE and SFR of [AQU-IC]

The following table lists the SFRs that are declared on the [AQU-IC] Integrated Circuit Security Target [AQU-
IC] and separates them in:

IP_SFR: Irrelevant Platform-SFRs not being used by the Composite-ST.
RP_SFR-SERV: Relevant Platform-SFRs being used by the Composite-ST to implement a security
service with associated TSFI.
MRP_SFR-MECH: Relevant Platform-SFRs being used by the Composite-ST because of its security
properties providing protection against attacks to the TOE as a whole and are addressed in ADV_ARC.
These required security properties are a result of the security mechanisms and services that are
implemented in the Platform TOE, as specified in [JIL_CPE].

These definitions are according to the [JIL_CPE] on which the Platform TOE on our case is the relaying IC,
the [AQU-IC] Integrated Circuit.
The first column lists the [AQU-IC] and the next columns indicate their classification according to the paragraph
above. The SFR’s on the cells of the classification belong the MultiApp v4.2 TOE described in this document.
If there is no SFR on each cell is because not all CC class families have a corresponding match on both sides,
but all SFRs from the [AQU-IC] have been classified. Moreover, no contradictions have been found between
the Platform-SFRs set and the SFRs related to the composite product.
…

AQUARIUS_BA_09 SFR's IP_SFR RP_SFR-SERV (*) RP_SFR-MECH

Security functional requirements of the TOE defined in [PP0084]

FRU_FLT.2

 X
FDP_SDI.2/DATA
FPT_PHP.3/SCP

FPT_FLS.1

 X
FPT_FLS.1/JCS

FPT_FLS.1/Installer
FPT_FLS.1/ADEL
FPT_FLS.1/ODEL

FPT_FLS.1/SpecificAPI

FMT_LIM.1

 X
FMT_LIM.1/PERSO
FMT_LIM.2/PERSO

FMT_LIM.2

 X
FMT_LIM.1/PERSO
FMT_LIM.2/PERSO

FAU_SAS.1 X

FDP_SDC.1
 X

*see table 27

FDP_SDI.2
 X

FDP_SDI.2/DATA

FPT_PHP.3
 X

FPT_PHP.3/SCP

FDP_ITT.1
 X

*see table 27

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 54 / 60

AQUARIUS_BA_09 SFR's IP_SFR RP_SFR-SERV (*) RP_SFR-MECH

FPT_ITT.1
 X

FPT_ITT.1/SpecificAPI

FDP_IFC.1
 X

FDP_IFC.1/JCVM

FCS_RNG.1/PTG.2 x

FCS_RNG.1

FMT_LIM.1/Loader

 X
FMT_LIM.1/PERSO
FMT_LIM.2/PERSO

FMT_LIM.2/Loader

 X
FMT_LIM.1/PERSO
FMT_LIM.2/PERSO

FTP_ITC.1

 X
FTP_ITC.1/CM

FTP_ITC.1/PACE

FDP_UCT.1
 X

FDP_ACC.1.1/CMGR

FDP_UIT.1
 X

 FDP_UIT.1/CM

FDP_ACC.1/Loader
 X

FDP_ACC.1.1/CMGR

FDP_ACF.1/Loader
 X

FDP_ACF.1.1/CMGR

FDP_ACC.1/Memory X

FDP_ACC.1.1/CMGR

FDP_ACF.1/ Memory X

FDP_ACF.1.1/CMGR

FIA_API.1

 X
FIA_UID.2/AID
FIA_UAU.1/CM
FIA_UID.1/CM

Additional security functional requirements of the TOE

FMT_MSA.1

 X
FMT_MSA.1/ADEL
FMT_MSA.1/JCRE
FMT_MSA.1/JCVM
FMT_MSA.1/CM

FMT_MSA.1/CMGR

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 55 / 60

AQUARIUS_BA_09 SFR's IP_SFR RP_SFR-SERV (*) RP_SFR-MECH

FMT_MSA.3

 X
FMT_MSA.3/FIREWALL

FMT_MSA.3/JCVM
FMT_MSA.3/ADEL
FMT_MSA.3/CM

FMT_MSA.3/CMGR

FMT_SMF.1

 X
FMT_SMF.1/CORE_LC

FMT_SMF.1/ADEL
FMT_SMF.1/CM

Table 7 Compatibility between SFR of TOE and SFR of [AQU-IC]

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 56 / 60

7.3.4 SAR DEPENDENCIES

Requirements CC dependencies Satisfied dependencies

ADV_ARC.1 ADV_FSP.1; ADV_TDS.1 ADV_FSP.6; ADV_TDS.6

ADV_FSP.6 ADV_TDS.1; ADV_IMP.1 ADV_TDS.6; ADV_IMP.2

ADV_IMP.2 ADV_TDS.3; ALC_TAT.1; ALC_CMC.5 ADV_TDS.6; ALC_TAT.3: ALC_CMC.5

ADV_INT.3 ADV_IMP.1; ADV_TDS.3; ALC_TAT.1 ADV_IMP.2; ADV_TDS.6; ALC_TAT.3

ADV_TDS.6 ADV_FSP.6 ADV_FSP.6

ADV_SPM.1 ADV_FSP.4 ADV_FSP.6

AGD_OPE.1 ADV_FSP.1 ADV_FSP.6

AGD_PRE.1 None

ALC_CMC.5 ALC_CMS.1; ALC_DVS.2; ALC_LCD.1 ALC_CMS.5; ALC_DVS.2; ALC_LCD.2

ALC_CMS.5 None

ALC_DEL.1 None

ALC_DVS.2 None

ALC_LCD.2 None

ALC_TAT.3 ADV_IMP.1 ADV_IMP.2

ATE_COV.3 ADV_FSP.2; ATE_FUN.1 ADV_FSP.6; ATE_FUN.2

ATE_DPT.4
ADV_ARC.1; ADV_TDS.4; ADV_IMP.1;
ATE_FUN.1

ADV_ARC.1; ADV_TDS.6; ADV_IMP.2;
ATE_FUN.2

ATE_FUN.2 ATE_COV.1 ATE_COV.3

ATE_IND.3
ADV_FSP.4; AGD_OPE.1; AGD_PRE.1;
ATE_COV.1; ATE_FUN.1

ADV_FSP.6; AGD_OPE.1; AGD_PRE.1;
ATE_COV.3; ATE_FUN.2

AVA_VAN.5
ADV_ARC.1; ADV_FSP.4; ADV_TDS.3;
ADV_IMP.1; AGD_OPE.1; AGD_PRE.1;
ATE_DPT.1

ADV_ARC.1; ADV_FSP.6; ADV_TDS.6;
ADV_IMP.2; AGD_OPE.1; AGD_PRE.1;
ATE_DPT.4

Table 8: SAR dependencies

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 57 / 60

7.3.5 RATIONALE FOR THE SECURITY ASSURANCE REQUIREMENTS

7.3.5.1 EAL7: Formally verified design and tested

EAL7 is required for this type of TOE and product since it is intended to defend against sophisticated attacks.
This evaluation assurance level allows a developer to gain maximum assurance from positive security
engineering based on good practices. In order to provide a meaningful level of assurance that the TOE and its
embedding product provide an adequate level of defense against such attacks: the evaluators should have
access to the low level design and source code. Additionally the formal model of select TOE security policies
and the semiformal presentation of the functional specification and TOE design, provided by EAL7, gives a
more structured presentation of the implementation and a thus more assurance on the TOE.

This product is intended to be used in an open environment where sensitive and non-sensitive but hostile
applications will co-exist on the product. One of the most sensitive functions of the embedded software of this
product, providing the property of isolation between applications is the firewall. To provide assurance on the
correct behavior of this security function, this security target provides formal assurances on its development
from the EAL7 level. The formal assurances provide evidence that this function has been implemented
correctly with respect to the specification.

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 58 / 60

8 TOE SUMMARY SPECIFICATION

8.1 TOE SECURITY FUNCTIONS

TOE Security Functions are provided by the TOE embedded software (including the optional NVM ES) and by
the chip.

8.1.1 SF provided by MultiApp V5.1 platform: SF.FW: Firewall

The JCRE firewall enforces applet isolation. The JCRE shall allocate and manage a context for each applet or
package installed respectively loaded on the card and its own JCRE context. Applet cannot access each
other's objects unless they are defined in the same package (they share the same context) or they use the
object sharing mechanism supported by JCRE.

An operation OP.PUT (S1, S.MEMBER, I) is allowed if and only if the active context is
"JCRE"; other OP.PUT operations are allowed regardless of the active context's value.

FDP_IFC.1/JCVM
FDP_IFF.1/JCVM

Only the S.JCRE can modify the security attributes the active context, the selected
applet context security attributes.

FMT_MSA.1/JCRE

Only the S.JCVM can modify the security attributes the active context, the currently
active Context and the Active Applets security attributes.

FMT_MSA.1/JCVM

The JCVM information flow control SFP to provide restrictive default values for security
attributes that are used to enforce the SFP. And not allow any role to specify alternative
initial values to override the default values when an object or information is created.

FMT_MSA.3/JCVM

only secure values are accepted for all the security attributes of subjects and objects
defined in the FIREWALL access control SFP and the JCVM information flow control
SFP.

FMT_MSA.2/FIREWALL
_JCVM

provide restrictive default values for security attributes that are used to enforce the
SFP.

FMT_MSA.3/FIREWALL

The TSF maintains the roles: the Java Card RE, the Java Card VM. The TSF is able
to associate users with roles.

FMT_SMR.1/JCRE

The TSF is capable of performing the following management functions:

• Modify the active context and the SELECTed applet Context.

• Modify the list of registered applets' AID

FMT_SMF.1/CORE_LC

([JCRE3]§6.2.8) An S.CAP_FILE may freely perform any of OP.ARRAY_ACCESS,
OP.INSTANCE_FIELD, OP.INVK_VIRTUAL, OP.INVK_INTERFACE, OP.THROW or
OP.TYPE_ACCESS upon any O.JAVAOBJECT whose Sharing attribute has value
"JCRE entry point" or "global array".

FDP_ACC.2/FIREWALL
FDP_ACF.1/FIREWALL

([JCRE3]§6.2.8) An S.CAP_FILE may freely perform any of OP.ARRAY_ACCESS,
OP.INSTANCE_FIELD, OP.INVK_VIRTUAL, OP.INVK_INTERFACE or OP.THROW
upon any O.JAVAOBJECT whose Sharing attribute has value "Standard" and whose
Lifetime attribute has value "PERSISTENT" only if O.JAVAOBJECT's Context attribute
has the same value as the active context.

FDP_ACC.2/FIREWALL
FDP_ACF.1/FIREWALL

([JCRE3]§6.2.8.10) An S.CAP_FILE may perform OP.TYPE_ACCESS upon an
O.JAVAOBJECT whose Sharing attribute has value "SIO" only if O.JAVAOBJECT is
being cast into (checkcast) or is being verified as being an instance of (instanceof) an
interface that extends the Shareable interface.

FDP_ACC.2/FIREWALL
FDP_ACF.1/FIREWALL

• ([JCRE3], §6.2.8.6,) An S.CAP_FILE may perform OP.INVK_INTERFACE
upon an O.JAVAOBJECT whose Sharing attribute has the value "SIO", and
whose Context attribute has the value "Package AID", only if one of the
following applies:

(c) The value of the attribute Selection Status of the package whose AID is
"Package AID" is "Multiselectable",

(d) The value of the attribute Selection Status of the package whose AID is
"Package AID' is "Non-multiselectable", and either "Package AID" is the value
of the currently selected applet or otherwise "Package AID" does not occur in
the attribute ActiveApplets,

and in either of the cases above the invoked interface method extends the Shareable
interface

FDP_ACC.2/FIREWALL
FDP_ACF.1/FIREWALL

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 59 / 60

An S.CAP_FILE may perform an OP.CREATE only if the value of the Sharing
parameter(*) is "Standard".

FDP_ACC.2/FIREWALL
FDP_ACF.1/FIREWALL

The subject S.JCRE can freely perform OP.JAVA(...) and OP.CREATE, with the
following two exceptions:

1. Any subject with OP.JAVA upon an O.JAVAOBJECT whose LifeTime attribute has
value "CLEAR_ON_DESELECT" if O.JAVAOBJECT's Context attribute is not the
same as the SELECTed applet Context.

2. Any subject with OP.CREATE and a "CLEAR_ON_DESELECT" LifeTime
parameter if the active context is not the same as the SELECTed applet Context.

FDP_ACC.2/FIREWALL
FDP_ACF.1/FIREWALL

8.1.1.1 SF.AID: AID Management

Only the JCRE can modify the list of registered applets' AIDs. FMT_MTD.1/JCRE

8.1.2 TSFs provided by the AQUARIUS_BA_09

The evaluation is a composite evaluation and uses the results of the CC evaluation provided by [CR-IC]. The
IC and its primary embedded software have been evaluated at level EAL 6+. These SF are the same for the
IC considered in this ST;

SF Description

SF_PMODE Manages the different steps of the product life cycle. At each step (boot

mode, test mode and user mode), registers, data and memories accesses

are limited or not. This allows to restrict product access according to the

step (from manufacturing phase to final user phase). In addition, it is not

possible to come back to test mode after the deployment of the product.

SF_AUDIT_STORAGE Allows to store specific data which shall remain permanent in the system

such as the unique identification of the product stored in the Flash

memory, pre-personalization data and security information.

SF_AUTHENT Provides mutual authentication between the TOE and the “Terminal”

based on cryptographic mechanisms. Authentication is done before the

loading operation.

SF_CONF_INT Provides confidentiality and integrity to data stored in the memories

(ROM, RAM, FLASH), in registers and in buses. The SF_CONF_INT

prevents the disclosure of internal user data thanks to:

▪ Memories encryption.

▪ Buses encryption.

▪ Register masking and cycling.

▪ Address scrambling.

▪ Integrity mechanisms on memories, buses and registers.

SF_EXEC Provides protection against an un-correct execution of the code such as:

▪ Mechanisms to detect code re-routing.

▪ Mechanisms to detect illegal opcode execution.

▪ Mechanisms to control the operating conditions.

In case of detection of an abnormal execution, an alarm is sent.

Ensures also the correct operating conditions of the product during the

execution and prevents any malfunction using sensors.

SF_MEM_ACCESS Provides:

 MultiApp V5.1: Security Target
Java Card Virtual Machine

ST Ref: D1586135_LITE Rev :1.1 Page : 60 / 60

▪ A Memory Protection Unit (MPU) that defines access permission on

different memories areas.

▪ A Flash Protection Unit that defines access permission on NVR areas.

Provides also an access control to user data stored in Flash during the

deployment of the Loader and after.

SF_PHY_PRO Provides physical protection to the product against physical manipulation

and physical probing. The following features are used:

▪ Active Shield.

▪ Countermeasures added during the layout design.

SF_ALARM Enables to trig either an interrupt or a hardware reset. This TSF provides
preservation of secure state in case of exposure to operation conditions
which are not tolerated.

SF_RANDOM Provides mechanisms to prevent access to sensitive assets during the use
by the Secure Embedded Software thanks to:

▪ Generate variation of the clock frequency around a range of frequency.

▪ Randomize the clock stealer.

Randomize the execution of the commands.

SF_RNG Provides a random number generator (PTRNG) that meets PTG.2 class

of BSI-AIS31 (German Scheme). It is used for key generation or for

security measures.

 SF_SEC_LOAD Allows to load some code in the product in a secure way and, after the

loading, to lock the loading mechanism.

Table 9: Security Functions provided by the THALES DIS France SAS AQUARIUS_BA_09 chips

These SF are described in [AQU-IC].

END OF DOCUMENT

